BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 34324287)

  • 1. Efficiently Boosting Moisture Retention Capacity of Porous Superprotonic Conducting MOF-802 at Ambient Humidity via Forming a Hydrogel Composite Strategy.
    Zhang J; He X; Kong YR; Luo HB; Liu M; Liu Y; Ren XM
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37231-37238. PubMed ID: 34324287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidic Groups Functionalized Carbon Dots Capping Channels of a Proton Conductive Metal-Organic Framework by Coordination Bonds to Improve the Water-Retention Capacity and Boost Proton Conduction.
    Zhang J; Zhang R; Liu Y; Kong YR; Luo HB; Zou Y; Zhai L; Ren XM
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60084-60091. PubMed ID: 34889608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superprotonic Conductivity of a Functionalized Metal-Organic Framework at Ambient Conditions.
    Li XM; Wang Y; Mu Y; Liu J; Zeng L; Lan YQ
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9264-9271. PubMed ID: 35138786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal-Response Proton Conduction in Schiff Base-Incorporated Metal-Organic Framework Hybrid Membranes under Low Humidity Based on the Excited-State Intramolecular Proton Transfer Mechanism.
    Du Z; Zhang F; Lin H; Guo W; Tian M; Yu K; Gao D; Qu F
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36763966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superprotonic Conductivity of MOFs Confining Zwitterionic Sulfamic Acid as Proton Source and Conducting Medium.
    Sharma A; Lim J; Lee S; Han S; Seong J; Bin Baek S; Soo Lah M
    Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202302376. PubMed ID: 37160648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extra Water- and Acid-Stable MOF-801 with High Proton Conductivity and Its Composite Membrane for Proton-Exchange Membrane.
    Zhang J; Bai HJ; Ren Q; Luo HB; Ren XM; Tian ZF; Lu S
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28656-28663. PubMed ID: 30070818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Proton Conductivity in Nafion/Ni-MOF Composite Membranes Promoted by Ligand Exchange under Ambient Conditions.
    Wang H; Wen T; Shao Z; Zhao Y; Cui Y; Gao K; Xu W; Hou H
    Inorg Chem; 2021 Jul; 60(14):10492-10501. PubMed ID: 34212727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superprotonic Conductivity of UiO-66 with Missing-Linker Defects in Aqua-Ammonia Vapor.
    Liu QQ; Liu SS; Liu XF; Xu XJ; Dong XY; Zhang HJ; Zang SQ
    Inorg Chem; 2022 Feb; 61(8):3406-3411. PubMed ID: 35170960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust ionic liquid@MOF composite as a versatile superprotonic conductor.
    Taksande K; Gkaniatsou E; Simonnet-Jégat C; Livage C; Maurin G; Steunou N; Devautour-Vinot S
    Dalton Trans; 2021 Nov; 50(43):15914-15923. PubMed ID: 34723313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Proton Conductivity Achieved by Encapsulation of Imidazole Molecules into Proton-Conducting MOF-808.
    Luo HB; Ren Q; Wang P; Zhang J; Wang L; Ren XM
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9164-9171. PubMed ID: 30747511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton-Conductive Cerium-Based Metal-Organic Frameworks.
    Ho WH; Li SC; Wang YC; Chang TE; Chiang YT; Li YP; Kung CW
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55358-55366. PubMed ID: 34757712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MOF-Based Solid-State Proton Conductors Obtained by Intertwining Protic Ionic Liquid Polymers with MIL-101.
    Zhang S; Xie Y; Somerville RJ; Tirani FF; Scopelliti R; Fei Z; Zhu D; Dyson PJ
    Small; 2023 Oct; 19(41):e2206999. PubMed ID: 37317016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-Functional Proton-Conducting and pH-Sensing Polymer Membrane Benefiting from a Eu-MOF.
    Huang SZ; Liu SS; Zhang HJ; Han Z; Zhao G; Dong XY; Zang SQ
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28720-28726. PubMed ID: 32470284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving Superprotonic Conduction with a 2D Fluorinated Metal-Organic Framework.
    Mileo PGM; Adil K; Davis L; Cadiau A; Belmabkhout Y; Aggarwal H; Maurin G; Eddaoudi M; Devautour-Vinot S
    J Am Chem Soc; 2018 Oct; 140(41):13156-13160. PubMed ID: 30226772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton Conducting Metal-Organic Frameworks (MOFs) via Post Synthetic Transmetallation and Water Induced Structural Transformations.
    Goswami A; Ghorai A; Pal D; Banerjee S; Biradha K
    Chemistry; 2024 Jun; ():e202402165. PubMed ID: 38925585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Proton-Conducting Stability by Regulating Pore Size of MOF Materials through Mixed Grinding.
    Liu J; Yan W; Ma Y; Li X; Zhong J; Zheng X; Liu Z
    ACS Appl Mater Interfaces; 2024 Jun; ():. PubMed ID: 38914052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achieving Amphibious Superprotonic Conductivity in a Cu
    Khatua S; Bar AK; Sheikh JA; Clearfield A; Konar S
    Chemistry; 2018 Jan; 24(4):872-880. PubMed ID: 29064595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-dependent proton conducting behavior in a metal-organic framework material.
    Phang WJ; Lee WR; Yoo K; Ryu DW; Kim B; Hong CS
    Angew Chem Int Ed Engl; 2014 Aug; 53(32):8383-7. PubMed ID: 24986637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Organic Frameworks as a Versatile Platform for Proton Conductors.
    Ye Y; Gong L; Xiang S; Zhang Z; Chen B
    Adv Mater; 2020 May; 32(21):e1907090. PubMed ID: 32243018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superprotonic Conductivity of MOF-808 Achieved by Controlling the Binding Mode of Grafted Sulfamate.
    Sharma A; Lim J; Jeong S; Won S; Seong J; Lee S; Kim YS; Baek SB; Lah MS
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14334-14338. PubMed ID: 33960088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.