These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34324341)

  • 41. Scalable Mechanochemical Amorphization of Bimetallic Cu-Zn MOF-74 Catalyst for Selective CO
    Stolar T; Prašnikar A; Martinez V; Karadeniz B; Bjelić A; Mali G; Friščić T; Likozar B; Užarević K
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3070-3077. PubMed ID: 33406367
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A nonmetallic plasmonic catalyst for photothermal CO
    Wan X; Li Y; Chen Y; Ma J; Liu YA; Zhao ED; Gu Y; Zhao Y; Cui Y; Li R; Liu D; Long R; Liew KM; Xiong Y
    Nat Commun; 2024 Feb; 15(1):1273. PubMed ID: 38341405
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Water State-Driven Catalytic Hydrolysis of Ammonia Borane on Cu
    Song B; Li N; Chang Q; Xue C; Yang J; Hu S
    ACS Appl Mater Interfaces; 2023 May; 15(18):22123-22131. PubMed ID: 37126804
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Active sites for CO
    Kattel S; Ramírez PJ; Chen JG; Rodriguez JA; Liu P
    Science; 2017 Mar; 355(6331):1296-1299. PubMed ID: 28336665
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrocatalysis Boosts the Methanol Thermocatalytic Dehydrogenation for High-Purity H
    Wu Y; Huang G; Du S; Li M; Liu Q; Zhou Y; Jiang Z; Zhu X; Wang Y; Wang T; Tao L; Wang S
    J Am Chem Soc; 2024 Apr; 146(14):9657-9664. PubMed ID: 38557037
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Scalable Synthesis of Oxygen Vacancy-Rich Unsupported Iron Oxide for Efficient Thermocatalytic Conversion of Methane to Hydrogen and Carbon Nanomaterials.
    Alharthi AI; Qahtan TF; Shaddad MN; Alotaibi MA; Alotibi S; Alansi AM
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686970
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Controlling ZnO morphology for improved methanol steam reforming reactivity.
    Karim AM; Conant T; Datye AK
    Phys Chem Chem Phys; 2008 Sep; 10(36):5584-90. PubMed ID: 18956093
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stable Cu/Cu
    Lu M; Zheng Z; Lu W; Zhu H; Liao J; Ge Y; Huang X; Zhang Q; Li J; Zhou Y; Wu X; Chen B; Yang C; Qian X; Shao M; Wang T
    ACS Nano; 2024 Sep; 18(37):25636-25646. PubMed ID: 39235312
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Catalysts for Hydrogen Generation via Oxy-Steam Reforming of Methanol Process.
    Mosińska M; Szynkowska-Jóźwik MI; Mierczyński P
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33302526
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hot-electron-transfer enhancement for the efficient energy conversion of visible light.
    Yu S; Kim YH; Lee SY; Song HD; Yi J
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11203-7. PubMed ID: 25169852
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrabroadband plasmon driving selective photoreforming of methanol under ambient conditions.
    Uddin N; Sun Z; Langley J; Lu H; Cao P; Wibowo A; Yin X; Tang CS; Nguyen HT; Evans JD; Li X; Zhang X; Heggen M; Dunin-Borkowski RE; Wee ATS; Zhao H; Cox N; Yin Z
    Proc Natl Acad Sci U S A; 2023 Jan; 120(3):e2212075120. PubMed ID: 36634137
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Site-Selective Deposition of Reductive and Oxidative Dual Cocatalysts To Improve the Photocatalytic Hydrogen Production Activity of CaIn
    Ding J; Li X; Chen L; Zhang X; Yin H; Tian X
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):835-845. PubMed ID: 30560651
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Atomic Dispersed Co on NC@Cu Core-Shells for Solar Seawater Splitting.
    Sun Z; Cheng S; Jing X; Liu K; Chen YL; Wibowo AA; Yin H; Usman M; MacDonald D; Cheong S; Webster RF; Gloag L; Cox N; Tilley RD; Yin Z
    Adv Mater; 2024 Dec; 36(49):e2406088. PubMed ID: 39402768
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Methane Oxidation to Methanol in Water.
    Freakley SJ; Dimitratos N; Willock DJ; Taylor SH; Kiely CJ; Hutchings GJ
    Acc Chem Res; 2021 Jun; 54(11):2614-2623. PubMed ID: 34008962
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photoinduction of Cu Single Atoms Decorated on UiO-66-NH
    Wang G; He CT; Huang R; Mao J; Wang D; Li Y
    J Am Chem Soc; 2020 Nov; 142(45):19339-19345. PubMed ID: 33119303
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Stacked Plasmonic Metamaterial with Strong Localized Electric Field Enables Highly Efficient Broadband Light-Driven CO
    Shao T; Wang X; Dong H; Liu S; Duan D; Li Y; Song P; Jiang H; Hou Z; Gao C; Xiong Y
    Adv Mater; 2022 Jul; 34(28):e2202367. PubMed ID: 35522089
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Light-Enhanced Carbon Dioxide Activation and Conversion by Effective Plasmonic Coupling Effect of Pt and Au Nanoparticles.
    Song H; Meng X; Dao TD; Zhou W; Liu H; Shi L; Zhang H; Nagao T; Kako T; Ye J
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):408-416. PubMed ID: 29226665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.