These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34324356)

  • 41. Screening of Oligopeptides that Recognize Inorganic Crystalline Facets of Metal Nanoparticles.
    Wei Z; Maeda Y; Kanetsuki Y; Shi M; Matsui H
    Isr J Chem; 2015 Jun; 55(6-7):749-755. PubMed ID: 31666749
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Facet-regulated adhesion of double-stranded DNA on palladium surfaces.
    Gu Z; Zhao L; Ge C; Liu S; Fang G; Chen SS; Yang Z; Zhou R
    Nanoscale; 2019 Jan; 11(4):1827-1836. PubMed ID: 30633285
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ab initio molecular dynamics simulations of the adsorption of H2 on palladium surfaces.
    Gross A
    Chemphyschem; 2010 May; 11(7):1374-81. PubMed ID: 20099293
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Controlled formation of concave tetrahedral/trigonal bipyramidal palladium nanocrystals.
    Huang X; Tang S; Zhang H; Zhou Z; Zheng N
    J Am Chem Soc; 2009 Oct; 131(39):13916-7. PubMed ID: 19743854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine.
    Zhou L; Xu J; Liang X; Liu Z
    J Hazard Mater; 2010 Oct; 182(1-3):518-24. PubMed ID: 20621417
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Facet Energy versus Enzyme-like Activities: The Unexpected Protection of Palladium Nanocrystals against Oxidative Damage.
    Ge C; Fang G; Shen X; Chong Y; Wamer WG; Gao X; Chai Z; Chen C; Yin JJ
    ACS Nano; 2016 Nov; 10(11):10436-10445. PubMed ID: 27934089
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting nanocrystal shape through consideration of surface-ligand interactions.
    Bealing CR; Baumgardner WJ; Choi JJ; Hanrath T; Hennig RG
    ACS Nano; 2012 Mar; 6(3):2118-27. PubMed ID: 22329695
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of Noncovalent Interactions on the Catalytic Activity of Unsupported Colloidal Palladium Nanoparticles Stabilized with Thiolate Ligands.
    Maung MS; Shon YS
    J Phys Chem C Nanomater Interfaces; 2017 Sep; 121(38):20882-20891. PubMed ID: 29326755
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Palladium nanoparticle formation processes in fluoropolymers by thermal decomposition of organometallic precursors.
    Zeng FW; Zhang D; Spicer JB
    Phys Chem Chem Phys; 2018 Oct; 20(37):24389-24398. PubMed ID: 30221271
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Facets and vertices regulate hydrogen uptake and release in palladium nanocrystals.
    Johnson NJJ; Lam B; MacLeod BP; Sherbo RS; Moreno-Gonzalez M; Fork DK; Berlinguette CP
    Nat Mater; 2019 May; 18(5):454-458. PubMed ID: 30858567
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Observing the Growth of Pb
    Wei W; Zhang H; Wang W; Dong M; Nie M; Sun L; Xu F
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24478-24484. PubMed ID: 31257843
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Palladium concave nanocrystals with high-index facets accelerate ascorbate oxidation in cancer treatment.
    Chong Y; Dai X; Fang G; Wu R; Zhao L; Ma X; Tian X; Lee S; Zhang C; Chen C; Chai Z; Ge C; Zhou R
    Nat Commun; 2018 Nov; 9(1):4861. PubMed ID: 30451824
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Self-assembled monolayers of alkanethiolates on palladium are good etch resists.
    Love JC; Wolfe DB; Chabinyc ML; Paul KE; Whitesides GM
    J Am Chem Soc; 2002 Feb; 124(8):1576-7. PubMed ID: 11853422
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control.
    Ramezani-Dakhel H; Bedford NM; Woehl TJ; Knecht MR; Naik RR; Heinz H
    Nanoscale; 2017 Jun; 9(24):8401-8409. PubMed ID: 28604905
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microwave induced in-situ active ion etching of growing InP nanocrystals.
    Lovingood DD; Strouse GF
    Nano Lett; 2008 Oct; 8(10):3394-7. PubMed ID: 18788791
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transient Clustering of Reaction Intermediates during Wet Etching of Silicon Nanostructures.
    Aabdin Z; Xu XM; Sen S; Anand U; Král P; Holsteyns F; Mirsaidov U
    Nano Lett; 2017 May; 17(5):2953-2958. PubMed ID: 28418255
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Facet-selective etching trajectories of individual semiconductor nanocrystals.
    Yan C; Byrne D; Ondry JC; Kahnt A; Moreno-Hernandez IA; Kamat GA; Liu ZJ; Laube C; Crook MF; Zhang Y; Ercius P; Alivisatos AP
    Sci Adv; 2022 Aug; 8(32):eabq1700. PubMed ID: 35947667
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In situ generation of palladium nanoparticles: a simple and highly active protocol for oxygen-promoted ligand-free suzuki coupling reaction of aryl chlorides.
    Han W; Liu C; Jin ZL
    Org Lett; 2007 Sep; 9(20):4005-7. PubMed ID: 17760456
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Particle Shape Control via Etching of Core@Shell Nanocrystals.
    Leonardi A; Engel M
    ACS Nano; 2018 Sep; 12(9):9186-9195. PubMed ID: 30075066
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of colloidal gold nanoparticle surface areas, concentrations, and sizes through quantitative ligand adsorption.
    Gadogbe M; Ansar SM; He G; Collier WE; Rodriguez J; Liu D; Chu IW; Zhang D
    Anal Bioanal Chem; 2013 Jan; 405(1):413-22. PubMed ID: 23092965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.