BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34324463)

  • 1. Can Deep Learning Replace Gadolinium in Neuro-Oncology?: A Reader Study.
    Ammari S; Bône A; Balleyguier C; Moulton E; Chouzenoux É; Volk A; Menu Y; Bidault F; Nicolas F; Robert P; Rohé MM; Lassau N
    Invest Radiol; 2022 Feb; 57(2):99-107. PubMed ID: 34324463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Dose Reduction to Contrast Maximization: Can Deep Learning Amplify the Impact of Contrast Media on Brain Magnetic Resonance Image Quality? A Reader Study.
    Bône A; Ammari S; Menu Y; Balleyguier C; Moulton E; Chouzenoux É; Volk A; Garcia GCTE; Nicolas F; Robert P; Rohé MM; Lassau N
    Invest Radiol; 2022 Aug; 57(8):527-535. PubMed ID: 35446300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of Gadolinium-Based Contrast Agents in MRI Using Convolutional Neural Networks and Different Input Protocols: Limited Interchangeability of Synthesized Sequences With Original Full-Dose Images Despite Excellent Quantitative Performance.
    Haase R; Pinetz T; Bendella Z; Kobler E; Paech D; Block W; Effland A; Radbruch A; Deike-Hofmann K
    Invest Radiol; 2023 Jun; 58(6):420-430. PubMed ID: 36735399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study.
    Kleesiek J; Morshuis JN; Isensee F; Deike-Hofmann K; Paech D; Kickingereder P; Köthe U; Rother C; Forsting M; Wick W; Bendszus M; Schlemmer HP; Radbruch A
    Invest Radiol; 2019 Oct; 54(10):653-660. PubMed ID: 31261293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.
    Gong E; Pauly JM; Wintermark M; Zaharchuk G
    J Magn Reson Imaging; 2018 Aug; 48(2):330-340. PubMed ID: 29437269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplifying the Effects of Contrast Agents on Magnetic Resonance Images Using a Deep Learning Method Trained on Synthetic Data.
    Fringuello Mingo A; Colombo Serra S; Macula A; Bella D; La Cava F; Alì M; Papa S; Tedoldi F; Smits M; Bifone A; Valbusa G
    Invest Radiol; 2023 Dec; 58(12):853-864. PubMed ID: 37378418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint MRI T1 Unenhancing and Contrast-enhancing Multiple Sclerosis Lesion Segmentation with Deep Learning in OPERA Trials.
    Krishnan AP; Song Z; Clayton D; Gaetano L; Jia X; de Crespigny A; Bengtsson T; Carano RAD
    Radiology; 2022 Mar; 302(3):662-673. PubMed ID: 34904871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrast-enhanced MRI synthesis using dense-dilated residual convolutions based 3D network toward elimination of gadolinium in neuro-oncology.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2023 Dec; 24(12):e14120. PubMed ID: 37552487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study.
    Jayachandran Preetha C; Meredig H; Brugnara G; Mahmutoglu MA; Foltyn M; Isensee F; Kessler T; Pflüger I; Schell M; Neuberger U; Petersen J; Wick A; Heiland S; Debus J; Platten M; Idbaih A; Brandes AA; Winkler F; van den Bent MJ; Nabors B; Stupp R; Maier-Hein KH; Gorlia T; Tonn JC; Weller M; Wick W; Bendszus M; Vollmuth P
    Lancet Digit Health; 2021 Dec; 3(12):e784-e794. PubMed ID: 34688602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined Deep Learning-based Super-Resolution and Partial Fourier Reconstruction for Gradient Echo Sequences in Abdominal MRI at 3 Tesla: Shortening Breath-Hold Time and Improving Image Sharpness and Lesion Conspicuity.
    Almansour H; Herrmann J; Gassenmaier S; Lingg A; Nickel MD; Kannengiesser S; Arberet S; Othman AE; Afat S
    Acad Radiol; 2023 May; 30(5):863-872. PubMed ID: 35810067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesizing Contrast-Enhanced MR Images from Noncontrast MR Images Using Deep Learning.
    Murugesan G; Yu FF; Achilleos M; DeBevits J; Nalawade S; Ganesh C; Wagner B; Madhuranthakam AJ; Maldjian JA
    AJNR Am J Neuroradiol; 2024 Mar; 45(3):312-319. PubMed ID: 38453408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic segmentation of gadolinium-enhancing lesions in multiple sclerosis using deep learning from clinical MRI.
    Gaj S; Ontaneda D; Nakamura K
    PLoS One; 2021; 16(9):e0255939. PubMed ID: 34469432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model.
    Conte GM; Weston AD; Vogelsang DC; Philbrick KA; Cai JC; Barbera M; Sanvito F; Lachance DH; Jenkins RB; Tobin WO; Eckel-Passow JE; Erickson BJ
    Radiology; 2021 May; 299(2):313-323. PubMed ID: 33687284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A generic deep learning model for reduced gadolinium dose in contrast-enhanced brain MRI.
    Pasumarthi S; Tamir JI; Christensen S; Zaharchuk G; Zhang T; Gong E
    Magn Reson Med; 2021 Sep; 86(3):1687-1700. PubMed ID: 33914965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning Reconstruction Enables Highly Accelerated Biparametric MR Imaging of the Prostate.
    Johnson PM; Tong A; Donthireddy A; Melamud K; Petrocelli R; Smereka P; Qian K; Keerthivasan MB; Chandarana H; Knoll F
    J Magn Reson Imaging; 2022 Jul; 56(1):184-195. PubMed ID: 34877735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between gadolinium-enhanced 2D T1-weighted gradient-echo and spin-echo sequences in the detection of active multiple sclerosis lesions on 3.0T MRI.
    Aymerich FX; Auger C; Alcaide-Leon P; Pareto D; Huerga E; Corral JF; Mitjana R; Sastre-Garriga J; Montalban X; Rovira A
    Eur Radiol; 2017 Apr; 27(4):1361-1368. PubMed ID: 27456965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning-Based Superresolution Reconstruction for Upper Abdominal Magnetic Resonance Imaging: An Analysis of Image Quality, Diagnostic Confidence, and Lesion Conspicuity.
    Almansour H; Gassenmaier S; Nickel D; Kannengiesser S; Afat S; Weiss J; Hoffmann R; Othman AE
    Invest Radiol; 2021 Aug; 56(8):509-516. PubMed ID: 33625063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Thick-Slab Overlapping MIP Images of Contrast-Enhanced 3D T1-Weighted CUBE for Detection of Intracranial Metastases: A Pilot Study for Comparison of Lesion Detection, Interpretation Time, and Sensitivity with Nonoverlapping CUBE MIP, CUBE, and Inversion-Recovery-Prepared Fast-Spoiled Gradient Recalled Brain Volume.
    Yoon BC; Saad AF; Rezaii P; Wintermark M; Zaharchuk G; Iv M
    AJNR Am J Neuroradiol; 2018 Sep; 39(9):1635-1642. PubMed ID: 30093483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing lesions of the brain: intraindividual crossover comparison of contrast enhancement after gadobenate dimeglumine versus established gadolinium comparators.
    Essig M; Tartaro A; Tartaglione T; Pirovano G; Kirchin MA; Spinazzi A
    Acad Radiol; 2006 Jun; 13(6):744-51. PubMed ID: 16679277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal MR protocol for hepatic hemangiomas. Comparison of conventional spin-echo sequences with T2-weighted turbo spin-echo and serial gradient-echo (FLASH) sequences with gadolinium enhancement.
    Kim TK; Choi BI; Han JK; Jang HJ; Han MC
    Acta Radiol; 1997 Jul; 38(4 Pt 1):565-71. PubMed ID: 9240679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.