These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 34324530)
1. Mapping the probability of forest snow disturbances in Finland. Suvanto S; Lehtonen A; Nevalainen S; Lehtonen I; Viiri H; Strandström M; Peltoniemi M PLoS One; 2021; 16(7):e0254876. PubMed ID: 34324530 [TBL] [Abstract][Full Text] [Related]
2. Climate change induces multiple risks to boreal forests and forestry in Finland: A literature review. Venäläinen A; Lehtonen I; Laapas M; Ruosteenoja K; Tikkanen OP; Viiri H; Ikonen VP; Peltola H Glob Chang Biol; 2020 Aug; 26(8):4178-4196. PubMed ID: 32449267 [TBL] [Abstract][Full Text] [Related]
3. Assessment of the Main Natural Disturbances on Norwegian Forest Based on 20 Years of National Inventory. Díaz-Yáñez O; Mola-Yudego B; Eriksen R; González-Olabarria JR PLoS One; 2016; 11(8):e0161361. PubMed ID: 27570973 [TBL] [Abstract][Full Text] [Related]
4. How does tree age influence damage and recovery in forests impacted by freezing rain and snow? Zhu L; Zhou T; Chen B; Peng S Sci China Life Sci; 2015 May; 58(5):472-9. PubMed ID: 25316045 [TBL] [Abstract][Full Text] [Related]
5. The effects of viewing a winter forest landscape with the ground and trees covered in snow on the psychological relaxation of young Finnish adults: A pilot study. Bielinis E; Janeczko E; Takayama N; Zawadzka A; Słupska A; Piętka S; Lipponen M; Bielinis L PLoS One; 2021; 16(1):e0244799. PubMed ID: 33411751 [TBL] [Abstract][Full Text] [Related]
6. Northern forest winters have lost cold, snowy conditions that are important for ecosystems and human communities. Contosta AR; Casson NJ; Garlick S; Nelson SJ; Ayres MP; Burakowski EA; Campbell J; Creed I; Eimers C; Evans C; Fernandez I; Fuss C; Huntington T; Patel K; Sanders-DeMott R; Son K; Templer P; Thornbrugh C Ecol Appl; 2019 Oct; 29(7):e01974. PubMed ID: 31310674 [TBL] [Abstract][Full Text] [Related]
7. Treeline advances along the Urals mountain range - driven by improved winter conditions? Hagedorn F; Shiyatov SG; Mazepa VS; Devi NM; Grigor'ev AA; Bartysh AA; Fomin VV; Kapralov DS; Terent'ev M; Bugman H; Rigling A; Moiseev PA Glob Chang Biol; 2014 Nov; 20(11):3530-43. PubMed ID: 24756980 [TBL] [Abstract][Full Text] [Related]
8. [Snow/wind damage in natural secondary forests in Liaodong mountainous regions of Liaoning Province]. Li X; Zhu J; Wang Q; Liu Z; Hou C; Yang H Ying Yong Sheng Tai Xue Bao; 2004 Jun; 15(6):941-6. PubMed ID: 15362612 [TBL] [Abstract][Full Text] [Related]
9. Models to Assess the Risk of Snow and Wind Damage in Pine, Spruce, and Birch Forests in Sweden. Valinger E; Fridman J Environ Manage; 1999 Sep; 24(2):209-217. PubMed ID: 10384030 [TBL] [Abstract][Full Text] [Related]
10. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest. Martz F; Vuosku J; Ovaskainen A; Stark S; Rautio P PLoS One; 2016; 11(6):e0156620. PubMed ID: 27254100 [TBL] [Abstract][Full Text] [Related]
11. Declines in northern forest tree growth following snowpack decline and soil freezing. Reinmann AB; Susser JR; Demaria EMC; Templer PH Glob Chang Biol; 2019 Feb; 25(2):420-430. PubMed ID: 30506555 [TBL] [Abstract][Full Text] [Related]
12. Changes of forest cover and disturbance regimes in the mountain forests of the Alps. Bebi P; Seidl R; Motta R; Fuhr M; Firm D; Krumm F; Conedera M; Ginzler C; Wohlgemuth T; Kulakowski D For Ecol Manage; 2017 Mar; 388():43-56. PubMed ID: 28860675 [TBL] [Abstract][Full Text] [Related]
13. Forest Gaps Inhibit Foliar Litter Pb and Cd Release in Winter and Inhibit Pb and Cd Accumulation in Growing Season in an Alpine Forest. He J; Yang W; Li H; Xu L; Ni X; Tan B; Zhao Y; Wu F PLoS One; 2015; 10(6):e0131528. PubMed ID: 26115012 [TBL] [Abstract][Full Text] [Related]
14. Modeling forest landscape futures: Full scale simulation of realistic socioeconomic scenarios in Estonia. Kaasik A; Kont R; Lõhmus A PLoS One; 2023; 18(11):e0294650. PubMed ID: 37976263 [TBL] [Abstract][Full Text] [Related]
15. Emerging climate-driven disturbance processes: widespread mortality associated with snow-to-rain transitions across 10° of latitude and half the range of a climate-threatened conifer. Buma B; Hennon PE; Harrington CA; Popkin JR; Krapek J; Lamb MS; Oakes LE; Saunders S; Zeglen S Glob Chang Biol; 2017 Jul; 23(7):2903-2914. PubMed ID: 27891717 [TBL] [Abstract][Full Text] [Related]
16. Pre-outbreak forest conditions mediate the effects of spruce beetle outbreaks on fuels in subalpine forests of Colorado. Mietkiewicz N; Kulakowski D; Veblen TT Ecol Appl; 2018 Mar; 28(2):457-472. PubMed ID: 29405527 [TBL] [Abstract][Full Text] [Related]
17. Functional traits and climate drive interspecific differences in disturbance-induced tree mortality. Barrere J; Reineking B; Cordonnier T; Kulha N; Honkaniemi J; Peltoniemi M; Korhonen KT; Ruiz-Benito P; Zavala MA; Kunstler G Glob Chang Biol; 2023 May; 29(10):2836-2851. PubMed ID: 36757005 [TBL] [Abstract][Full Text] [Related]
18. Natural disturbances are spatially diverse but temporally synchronized across temperate forest landscapes in Europe. Senf C; Seidl R Glob Chang Biol; 2018 Mar; 24(3):1201-1211. PubMed ID: 28881439 [TBL] [Abstract][Full Text] [Related]
19. Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems. Seidl R; Albrich K; Thom D; Rammer W J Environ Manage; 2018 Mar; 209():46-56. PubMed ID: 29275284 [TBL] [Abstract][Full Text] [Related]
20. Modeling the susceptibility of an uneven-aged broad-leaved forest to snowstorm damage using spatially explicit machine learning. Shabani S; Varamesh S; Moayedi H; Le Van B Environ Sci Pollut Res Int; 2023 Mar; 30(12):34203-34213. PubMed ID: 36508106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]