These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 34324684)
1. Preparation of the ubiquitination-triggered active form of SETDB1 in Escherichia coli for biochemical and structural analyses. Funyu T; Kanemaru Y; Onoda H; Arita K J Biochem; 2021 Dec; 170(5):655-662. PubMed ID: 34324684 [TBL] [Abstract][Full Text] [Related]
2. Ubiquitination of Lysine 867 of the Human SETDB1 Protein Upregulates Its Histone H3 Lysine 9 (H3K9) Methyltransferase Activity. Ishimoto K; Kawamata N; Uchihara Y; Okubo M; Fujimoto R; Gotoh E; Kakinouchi K; Mizohata E; Hino N; Okada Y; Mochizuki Y; Tanaka T; Hamakubo T; Sakai J; Kodama T; Inoue T; Tachibana K; Doi T PLoS One; 2016; 11(10):e0165766. PubMed ID: 27798683 [TBL] [Abstract][Full Text] [Related]
4. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Schultz DC; Ayyanathan K; Negorev D; Maul GG; Rauscher FJ Genes Dev; 2002 Apr; 16(8):919-32. PubMed ID: 11959841 [TBL] [Abstract][Full Text] [Related]
5. ATF7IP regulates SETDB1 nuclear localization and increases its ubiquitination. Tsusaka T; Shimura C; Shinkai Y EMBO Rep; 2019 Dec; 20(12):e48297. PubMed ID: 31576654 [TBL] [Abstract][Full Text] [Related]
6. mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Wang H; An W; Cao R; Xia L; Erdjument-Bromage H; Chatton B; Tempst P; Roeder RG; Zhang Y Mol Cell; 2003 Aug; 12(2):475-87. PubMed ID: 14536086 [TBL] [Abstract][Full Text] [Related]
7. In silico probing and biological evaluation of SETDB1/ESET-targeted novel compounds that reduce tri-methylated histone H3K9 (H3K9me3) level. Park I; Hwang YJ; Kim T; Viswanath ANI; Londhe AM; Jung SY; Sim KM; Min SJ; Lee JE; Seong J; Kim YK; No KT; Ryu H; Pae AN J Comput Aided Mol Des; 2017 Oct; 31(10):877-889. PubMed ID: 28879500 [TBL] [Abstract][Full Text] [Related]
8. The functions of SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) in biological process and disease. Luo H; Wu X; Zhu XH; Yi X; Du D; Jiang DS Epigenetics Chromatin; 2023 Dec; 16(1):47. PubMed ID: 38057834 [TBL] [Abstract][Full Text] [Related]
9. SETDB1-Mediated Silencing of Retroelements. Fukuda K; Shinkai Y Viruses; 2020 May; 12(6):. PubMed ID: 32486217 [TBL] [Abstract][Full Text] [Related]
10. Ubiquitination-dependent and -independent repression of target genes by SETDB1 reveal a context-dependent role for its methyltransferase activity during adipogenesis. Zhang J; Matsumura Y; Kano Y; Yoshida A; Kawamura T; Hirakawa H; Inagaki T; Tanaka T; Kimura H; Yanagi S; Fukami K; Doi T; Osborne TF; Kodama T; Aburatani H; Sakai J Genes Cells; 2021 Jul; 26(7):513-529. PubMed ID: 33971063 [TBL] [Abstract][Full Text] [Related]
11. SETDB1, an H3K9-specific methyltransferase: An attractive epigenetic target to combat cancer. Prashanth S; Radha Maniswami R; Rajajeyabalachandran G; Jegatheesan SK Drug Discov Today; 2024 May; 29(5):103982. PubMed ID: 38614159 [TBL] [Abstract][Full Text] [Related]
12. The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. Li H; Rauch T; Chen ZX; Szabó PE; Riggs AD; Pfeifer GP J Biol Chem; 2006 Jul; 281(28):19489-500. PubMed ID: 16682412 [TBL] [Abstract][Full Text] [Related]
13. Histone lysine methyltransferase SETDB1 as a novel target for central nervous system diseases. Markouli M; Strepkos D; Chlamydas S; Piperi C Prog Neurobiol; 2021 May; 200():101968. PubMed ID: 33279625 [TBL] [Abstract][Full Text] [Related]
14. The H3K9 Methylation Writer SETDB1 and its Reader MPP8 Cooperate to Silence Satellite DNA Repeats in Mouse Embryonic Stem Cells. Cruz-Tapias P; Robin P; Pontis J; Maestro LD; Ait-Si-Ali S Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31557926 [TBL] [Abstract][Full Text] [Related]
15. The fibronectin type-III (FNIII) domain of ATF7IP contributes to efficient transcriptional silencing mediated by the SETDB1 complex. Tsusaka T; Fukuda K; Shimura C; Kato M; Shinkai Y Epigenetics Chromatin; 2020 Nov; 13(1):52. PubMed ID: 33256805 [TBL] [Abstract][Full Text] [Related]
16. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Tachibana M; Ueda J; Fukuda M; Takeda N; Ohta T; Iwanari H; Sakihama T; Kodama T; Hamakubo T; Shinkai Y Genes Dev; 2005 Apr; 19(7):815-26. PubMed ID: 15774718 [TBL] [Abstract][Full Text] [Related]
17. Histone H2A ubiquitination inhibits the enzymatic activity of H3 lysine 36 methyltransferases. Yuan G; Ma B; Yuan W; Zhang Z; Chen P; Ding X; Feng L; Shen X; Chen S; Li G; Zhu B J Biol Chem; 2013 Oct; 288(43):30832-42. PubMed ID: 24019522 [TBL] [Abstract][Full Text] [Related]
18. ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease. Ryu H; Lee J; Hagerty SW; Soh BY; McAlpin SE; Cormier KA; Smith KM; Ferrante RJ Proc Natl Acad Sci U S A; 2006 Dec; 103(50):19176-81. PubMed ID: 17142323 [TBL] [Abstract][Full Text] [Related]
19. Histone Methyltransferase SETDB1: A Common Denominator of Tumorigenesis with Therapeutic Potential. Strepkos D; Markouli M; Klonou A; Papavassiliou AG; Piperi C Cancer Res; 2021 Feb; 81(3):525-534. PubMed ID: 33115801 [TBL] [Abstract][Full Text] [Related]
20. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. Ng HH; Xu RM; Zhang Y; Struhl K J Biol Chem; 2002 Sep; 277(38):34655-7. PubMed ID: 12167634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]