These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 34324907)

  • 1. Response surface methodology-based improvement of the yield and differentiation of properties of bacterial cellulose by metabolic enhancers.
    Cielecka I; Ryngajłło M; Maniukiewicz W; Bielecki S
    Int J Biol Macromol; 2021 Sep; 187():584-593. PubMed ID: 34324907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of nanocellulose-producing bacterial strains in static and agitated cultures with different starting pH.
    Chen G; Wu G; Chen L; Wang W; Hong FF; Jönsson LJ
    Carbohydr Polym; 2019 Jul; 215():280-288. PubMed ID: 30981355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus.
    Keshk SM
    Carbohydr Polym; 2014 Jan; 99():98-100. PubMed ID: 24274484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus.
    Hyun JY; Mahanty B; Kim CG
    Appl Biochem Biotechnol; 2014 Apr; 172(8):3748-60. PubMed ID: 24569910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process.
    Mohammadkazemi F; Faria M; Cordeiro N
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():393-9. PubMed ID: 27157766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus.
    Zhang S; Winestrand S; Guo X; Chen L; Hong F; Jönsson LJ
    Microb Cell Fact; 2014 Apr; 13():62. PubMed ID: 24884902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068.
    Volova TG; Prudnikova SV; Sukovatyi AG; Shishatskaya EI
    Appl Microbiol Biotechnol; 2018 Sep; 102(17):7417-7428. PubMed ID: 29982923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus.
    Huang C; Yang XY; Xiong L; Guo HJ; Luo J; Wang B; Zhang HR; Lin XQ; Chen XD
    Appl Biochem Biotechnol; 2015 Feb; 175(3):1678-88. PubMed ID: 25422061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production.
    Zhong C; Zhang GC; Liu M; Zheng XT; Han PP; Jia SR
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6189-99. PubMed ID: 23640364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose.
    Ruka DR; Simon GP; Dean KM
    Carbohydr Polym; 2012 Jun; 89(2):613-22. PubMed ID: 24750766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tolerance of the nanocellulose-producing bacterium Gluconacetobacter xylinus to lignocellulose-derived acids and aldehydes.
    Zhang S; Winestrand S; Chen L; Li D; Jönsson LJ; Hong F
    J Agric Food Chem; 2014 Oct; 62(40):9792-9. PubMed ID: 25186182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1.
    Abol-Fotouh D; Hassan MA; Shokry H; Roig A; Azab MS; Kashyout AEB
    Sci Rep; 2020 Feb; 10(1):3491. PubMed ID: 32103077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A uniaxially oriented nanofibrous cellulose scaffold from pellicles produced by Gluconacetobacter xylinus in dissolved oxygen culture.
    Nagashima A; Tsuji T; Kondo T
    Carbohydr Polym; 2016 Jan; 135():215-24. PubMed ID: 26453871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of cellulose nanocrystal addition on the production and characterization of bacterial nanocellulose.
    Bang WY; Adedeji OE; Kang HJ; Kang MD; Yang J; Lim YW; Jung YH
    Int J Biol Macromol; 2021 Dec; 193(Pt A):269-275. PubMed ID: 34695495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of different fermentation methods on bacterial cellulose and acid production by Gluconacetobacter xylinus in Cantonese-style rice vinegar.
    Fu L; Chen S; Yi J; Hou Z
    Food Sci Technol Int; 2014 Jul; 20(5):321-31. PubMed ID: 23751548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus.
    Wu SC; Li MH
    J Biosci Bioeng; 2015 Oct; 120(4):444-9. PubMed ID: 25823854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives.
    Gullo M; La China S; Falcone PM; Giudici P
    Appl Microbiol Biotechnol; 2018 Aug; 102(16):6885-6898. PubMed ID: 29926141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening of the common culture conditions affecting crystallinity of bacterial cellulose.
    Zeng X; Liu J; Chen J; Wang Q; Li Z; Wang H
    J Ind Microbiol Biotechnol; 2011 Dec; 38(12):1993-9. PubMed ID: 21630052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524.
    Mikkelsen D; Flanagan BM; Dykes GA; Gidley MJ
    J Appl Microbiol; 2009 Aug; 107(2):576-83. PubMed ID: 19302295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced production of fibrous bacterial cellulose in Gluconacetobacter xylinus culture medium containing modified protein of okara waste.
    Taokaew S; Nakson N; Thienchaimongkol J; Kobayashi T
    J Biosci Bioeng; 2023 Jan; 135(1):71-78. PubMed ID: 36437213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.