These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 34325086)

  • 1. Understanding the DNA double-strand break repair and its therapeutic implications.
    Ray U; Raghavan SC
    DNA Repair (Amst); 2021 Oct; 106():103177. PubMed ID: 34325086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homologous Recombination-Mediated DNA Repair and Implications for Clinical Treatment of Repair Defective Cancers.
    Reilly NM; Yard BD; Pittman DL
    Methods Mol Biol; 2019; 1999():3-29. PubMed ID: 31127567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly ADP Ribose Polymerase Inhibitor Olaparib Targeting Microhomology End Joining in Retinoblastoma Protein Defective Cancer: Analysis of the Retinoblastoma Cell-Killing Effects by Olaparib after Inducing Double-Strand Breaks.
    Jiang Y; Yam JC; Chu WK
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks.
    Murmann-Konda T; Soni A; Stuschke M; Iliakis G
    Mutat Res Genet Toxicol Environ Mutagen; 2021 Jul; 867():503372. PubMed ID: 34266628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of Microhomology to Genome Instability: Connection between DNA Repair and Replication Stress.
    Jiang Y
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA double-strand break repair in Penaeus monodon is predominantly dependent on homologous recombination.
    Srivastava S; Dahal S; Naidu SJ; Anand D; Gopalakrishnan V; Kooloth Valappil R; Raghavan SC
    DNA Res; 2017 Apr; 24(2):117-128. PubMed ID: 28431013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role for human homologous recombination factors in suppressing microhomology-mediated end joining.
    Ahrabi S; Sarkar S; Pfister SX; Pirovano G; Higgins GS; Porter AC; Humphrey TC
    Nucleic Acids Res; 2016 Jul; 44(12):5743-57. PubMed ID: 27131361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PARP-mediated repair, homologous recombination, and back-up non-homologous end joining-like repair of single-strand nicks.
    Metzger MJ; Stoddard BL; Monnat RJ
    DNA Repair (Amst); 2013 Jul; 12(7):529-34. PubMed ID: 23684799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microhomology-mediated end joining: Good, bad and ugly.
    Seol JH; Shim EY; Lee SE
    Mutat Res; 2018 May; 809():81-87. PubMed ID: 28754468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common and unique genetic interactions of the poly(ADP-ribose) polymerases PARP1 and PARP2 with DNA double-strand break repair pathways.
    Ghosh R; Roy S; Kamyab J; Danzter F; Franco S
    DNA Repair (Amst); 2016 Sep; 45():56-62. PubMed ID: 27373144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic lethality in DNA repair network: A novel avenue in targeted cancer therapy and combination therapeutics.
    Bhattacharjee S; Nandi S
    IUBMB Life; 2017 Dec; 69(12):929-937. PubMed ID: 29171189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting DNA Double-Strand Break (DSB) Repair to Counteract Tumor Radio-resistance.
    Zhao Y; Chen S
    Curr Drug Targets; 2019; 20(9):891-902. PubMed ID: 30806313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(ADP) ribose polymerase promotes DNA polymerase theta-mediated end joining by activation of end resection.
    Luedeman ME; Stroik S; Feng W; Luthman AJ; Gupta GP; Ramsden DA
    Nat Commun; 2022 Aug; 13(1):4547. PubMed ID: 35927262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The APE2 nuclease is essential for DNA double-strand break repair by microhomology-mediated end joining.
    Fleury H; MacEachern MK; Stiefel CM; Anand R; Sempeck C; Nebenfuehr B; Maurer-Alcalá K; Ball K; Proctor B; Belan O; Taylor E; Ortega R; Dodd B; Weatherly L; Dansoko D; Leung JW; Boulton SJ; Arnoult N
    Mol Cell; 2023 May; 83(9):1429-1445.e8. PubMed ID: 37044098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA polymerase θ (POLQ), double-strand break repair, and cancer.
    Wood RD; Doublié S
    DNA Repair (Amst); 2016 Aug; 44():22-32. PubMed ID: 27264557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient ligase 3-dependent microhomology-mediated end joining repair of DNA double-strand breaks in zebrafish embryos.
    He MD; Zhang FH; Wang HL; Wang HP; Zhu ZY; Sun YH
    Mutat Res; 2015 Oct; 780():86-96. PubMed ID: 26318124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways.
    Sallmyr A; Tomkinson AE
    J Biol Chem; 2018 Jul; 293(27):10536-10546. PubMed ID: 29530982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error-prone double-strand break repair.
    Shenoy TR; Boysen G; Wang MY; Xu QZ; Guo W; Koh FM; Wang C; Zhang LZ; Wang Y; Gil V; Aziz S; Christova R; Rodrigues DN; Crespo M; Rescigno P; Tunariu N; Riisnaes R; Zafeiriou Z; Flohr P; Yuan W; Knight E; Swain A; Ramalho-Santos M; Xu DY; de Bono J; Wu H
    Ann Oncol; 2017 Jul; 28(7):1495-1507. PubMed ID: 28383660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the Repair of DNA Double-Strand Breaks: A Review of Surrogate Plasmid-Based Reporter Methods.
    Dutta A; Mitra J; Hegde PM; Mitra S; Hegde ML
    Methods Mol Biol; 2023; 2701():173-182. PubMed ID: 37574482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.