These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 34325260)
1. Thermally assisted conversion of biowaste into environment-friendly energy storage materials for lithium-ion batteries. Ho CW; Shaji N; Kim HK; Park JW; Nanthagopal M; Lee CW Chemosphere; 2022 Jan; 286(Pt 1):131654. PubMed ID: 34325260 [TBL] [Abstract][Full Text] [Related]
2. Conversion of Natural Biowaste into Energy Storage Materials and Estimation of Discharge Capacity through Transfer Learning in Li-Ion Batteries. Nanthagopal M; Mouraliraman D; Han YR; Ho CW; Obregon J; Jung JY; Lee CW Nanomaterials (Basel); 2023 Nov; 13(22):. PubMed ID: 37999316 [TBL] [Abstract][Full Text] [Related]
3. Biomass-Derived Carbon Utilization for Electrochemical Energy Enhancement in Lithium-Ion Batteries. Jeong BJ; Jiang F; Sung JY; Jung SP; Oh DW; Gnanamuthu RM; Vediappan K; Lee CW Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921875 [TBL] [Abstract][Full Text] [Related]
4. Reduced Graphene Oxide Coating LiFePO Zhang Q; Zhou Y; Tong Y; Chi Y; Liu R; Dai C; Li Z; Cui Z; Liang Y; Tan Y Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139376 [TBL] [Abstract][Full Text] [Related]
5. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries. Wang B; Xu B; Liu T; Liu P; Guo C; Wang S; Wang Q; Xiong Z; Wang D; Zhao XS Nanoscale; 2014 Jan; 6(2):986-95. PubMed ID: 24287590 [TBL] [Abstract][Full Text] [Related]
6. Conformal Coating Strategy Comprising N-doped Carbon and Conventional Graphene for Achieving Ultrahigh Power and Cyclability of LiFePO4. Zhang K; Lee JT; Li P; Kang B; Kim JH; Yi GR; Park JH Nano Lett; 2015 Oct; 15(10):6756-63. PubMed ID: 26389552 [TBL] [Abstract][Full Text] [Related]
7. Improved Electrochemical Performance of LiFePO Wang P; Zhang G; Li Z; Sheng W; Zhang Y; Gu J; Zheng X; Cao F ACS Appl Mater Interfaces; 2016 Oct; 8(40):26908-26915. PubMed ID: 27661261 [TBL] [Abstract][Full Text] [Related]
8. Enhanced charge transport properties of an LFP/C/graphite composite as a cathode material for aqueous rechargeable lithium batteries. Duan W; Husain M; Li Y; Lashari NUR; Yang Y; Ma C; Zhao Y; Li X RSC Adv; 2023 Aug; 13(36):25327-25333. PubMed ID: 37622017 [TBL] [Abstract][Full Text] [Related]
9. Hierarchical Nitrogen-Doped Graphene/Carbon Nanotube Composite Cathode for Lithium-Oxygen Batteries. Shu C; Li B; Zhang B; Su D ChemSusChem; 2015 Dec; 8(23):3973-6. PubMed ID: 26559030 [TBL] [Abstract][Full Text] [Related]
10. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes. Choi S; Kim TH; Lee JI; Kim J; Song HK; Park S ChemSusChem; 2014 Dec; 7(12):3483-90. PubMed ID: 25333718 [TBL] [Abstract][Full Text] [Related]
11. Design of LiFePO Huang CY; Kuo TR; Yougbaré S; Lin LY J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1457-1465. PubMed ID: 34598027 [TBL] [Abstract][Full Text] [Related]
12. Direct regeneration of spent LiFePO Yang J; Zhou K; Gong R; Meng Q; Zhang Y; Dong P J Environ Manage; 2023 Dec; 348():119384. PubMed ID: 37925982 [TBL] [Abstract][Full Text] [Related]
13. Highly crystalline lithium titanium oxide sheets coated with nitrogen-doped carbon enable high-rate lithium-ion batteries. Han C; He YB; Li B; Li H; Ma J; Du H; Qin X; Yang QH; Kang F ChemSusChem; 2014 Sep; 7(9):2567-74. PubMed ID: 25044966 [TBL] [Abstract][Full Text] [Related]
14. The Surface Coating of Commercial LiFePO Xu X; Qi C; Hao Z; Wang H; Jiu J; Liu J; Yan H; Suganuma K Nanomicro Lett; 2018; 10(1):1. PubMed ID: 30393650 [TBL] [Abstract][Full Text] [Related]
15. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study. Ding Z; Zhao L; Suo L; Jiao Y; Meng S; Hu YS; Wang Z; Chen L Phys Chem Chem Phys; 2011 Sep; 13(33):15127-33. PubMed ID: 21789334 [TBL] [Abstract][Full Text] [Related]
16. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries. Bi H; Zhu H; Zu L; Gao Y; Gao S; Bai Y Waste Manag Res; 2020 Aug; 38(8):911-920. PubMed ID: 32552572 [TBL] [Abstract][Full Text] [Related]
17. LiFePO4 mesocrystals for lithium-ion batteries. Popovic J; Demir-Cakan R; Tornow J; Morcrette M; Su DS; Schlögl R; Antonietti M; Titirici MM Small; 2011 Apr; 7(8):1127-35. PubMed ID: 21449048 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of Electrochemical Performance of LiFePO Yi D; Cui X; Li N; Zhang L; Yang D ACS Omega; 2020 May; 5(17):9752-9758. PubMed ID: 32391462 [TBL] [Abstract][Full Text] [Related]
19. Facile synthesis of a carbon supported lithium iron phosphate nanocomposite cathode material from metal-organic framework for lithium-ion batteries. Yu L; Zeng H; Jia R; Zhang R; Xu B J Colloid Interface Sci; 2024 Oct; 672():564-573. PubMed ID: 38852357 [TBL] [Abstract][Full Text] [Related]
20. Nanosized LiFePO4 cathode materials for lithium ion batteries. Gu HB; Jun DK; Park GC; Jin B; Jin EM J Nanosci Nanotechnol; 2007 Nov; 7(11):3980-4. PubMed ID: 18047100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]