These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 34325260)
21. Metal Sulfides@Carbon Microfiber Networks for Boosting Lithium Ion/Sodium Ion Storage via a General Metal- Aspergillus niger Bioleaching Strategy. Li J; Wang L; Li L; Lv C; Zatovsky IV; Han W ACS Appl Mater Interfaces; 2019 Feb; 11(8):8072-8080. PubMed ID: 30722661 [TBL] [Abstract][Full Text] [Related]
22. Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries. Wang SH; Hou SS; Kuo PL; Teng H ACS Appl Mater Interfaces; 2013 Sep; 5(17):8477-85. PubMed ID: 23931907 [TBL] [Abstract][Full Text] [Related]
23. Carbon-coated LiFePO4-porous carbon composites as cathode materials for lithium ion batteries. Ni H; Liu J; Fan LZ Nanoscale; 2013 Mar; 5(5):2164-8. PubMed ID: 23389625 [TBL] [Abstract][Full Text] [Related]
24. MnCo Cao X; Sun Z; Zheng X; Jin C; Tian J; Li X; Yang R ChemSusChem; 2018 Feb; 11(3):574-579. PubMed ID: 29235727 [TBL] [Abstract][Full Text] [Related]
25. A Ternary Polyaniline/Active Carbon/Lithium Iron Phosphate Composite as Cathode Material for Lithium Ion Battery. Wang X; Zhang W; Huang Y; Xia T; Lian Y J Nanosci Nanotechnol; 2016 Jun; 16(6):6494-7. PubMed ID: 27427742 [TBL] [Abstract][Full Text] [Related]
26. Nitrogen-Doped Carbon-Coating Disproportionated SiO Materials as Long Cycling Stable Anode for Lithium Ion Batteries. Huang B; Chu B; Huang T; Yu A Molecules; 2021 Mar; 26(6):. PubMed ID: 33799687 [TBL] [Abstract][Full Text] [Related]
27. Direct regeneration of waste LiFePO Song L; Qi C; Wang S; Zhu X; Zhang T; Jin Y; Zhang M Waste Manag; 2023 Feb; 157():141-148. PubMed ID: 36538835 [TBL] [Abstract][Full Text] [Related]
28. Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries. Prasanna K; Subburaj T; Jo YN; Lee WJ; Lee CW ACS Appl Mater Interfaces; 2015 Apr; 7(15):7884-90. PubMed ID: 25822540 [TBL] [Abstract][Full Text] [Related]
29. A Multifunctional Amino Acid Enables Direct Recycling of Spent LiFePO Tang D; Ji G; Wang J; Liang Z; Chen W; Ji H; Ma J; Liu S; Zhuang Z; Zhou G Adv Mater; 2024 Feb; 36(5):e2309722. PubMed ID: 38010273 [TBL] [Abstract][Full Text] [Related]
30. Quasi-solid-state lithium-tellurium batteries based on flexible gel polymer electrolytes. Zhang Y; Lu W; Manaig D; Freschi DJ; Liu Y; Xie H; Liu J J Colloid Interface Sci; 2022 Jan; 605():547-555. PubMed ID: 34340039 [TBL] [Abstract][Full Text] [Related]
31. Drastically Enhanced High-Rate Performance of Carbon-Coated LiFePO4 Nanorods Using a Green Chemical Vapor Deposition (CVD) Method for Lithium Ion Battery: A Selective Carbon Coating Process. Tian R; Liu H; Jiang Y; Chen J; Tan X; Liu G; Zhang L; Gu X; Guo Y; Wang H; Sun L; Chu W ACS Appl Mater Interfaces; 2015 Jun; 7(21):11377-86. PubMed ID: 25970716 [TBL] [Abstract][Full Text] [Related]
32. Porous LiFePO4/C microspheres as high-power cathode materials for lithium ion batteries. Sun B; Wang Y; Wang B; Kim HS; Kim WS; Wang G J Nanosci Nanotechnol; 2013 May; 13(5):3655-9. PubMed ID: 23858922 [TBL] [Abstract][Full Text] [Related]
33. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries. Zhang J; Cai Y; Zhong Q; Lai D; Yao J Nanoscale; 2015 Nov; 7(42):17791-7. PubMed ID: 26456870 [TBL] [Abstract][Full Text] [Related]
34. New Ether-functionalized Morpholinium- and Piperidinium-based Ionic Liquids as Electrolyte Components in Lithium and Lithium-Ion Batteries. Navarra MA; Fujimura K; Sgambetterra M; Tsurumaki A; Panero S; Nakamura N; Ohno H; Scrosati B ChemSusChem; 2017 Jun; 10(11):2496-2504. PubMed ID: 28407378 [TBL] [Abstract][Full Text] [Related]
35. Solvothermal synthesis of monodisperse LiFePO4 micro hollow spheres as high performance cathode material for lithium ion batteries. Yang S; Hu M; Xi L; Ma R; Dong Y; Chung CY ACS Appl Mater Interfaces; 2013 Sep; 5(18):8961-7. PubMed ID: 23981067 [TBL] [Abstract][Full Text] [Related]
36. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries. Bi H; Zhu H; Zu L; Gao Y; Gao S; Wu Z Waste Manag Res; 2019 Dec; 37(12):1217-1228. PubMed ID: 31486742 [TBL] [Abstract][Full Text] [Related]
37. Bacteria-Derived Biological Carbon Building Robust Li-S Batteries. Wang T; Zhu J; Wei Z; Yang H; Ma Z; Ma R; Zhou J; Yang Y; Peng L; Fei H; Lu B; Duan X Nano Lett; 2019 Jul; 19(7):4384-4390. PubMed ID: 31150263 [TBL] [Abstract][Full Text] [Related]
38. Facile Deposition of the LiFePO Tolganbek N; Zhalgas N; Kadyrov Y; Umirov N; Bakenov Z; Mentbayeva A ACS Omega; 2023 Feb; 8(8):8045-8051. PubMed ID: 36872969 [TBL] [Abstract][Full Text] [Related]
39. Electrochemical studies of molybdate-doped LiFePO4 as a cathode material in Li-ion batteries. Kim K; Kam D; Kim Y; Kim S; Kim M; Kim HS J Nanosci Nanotechnol; 2013 May; 13(5):3383-6. PubMed ID: 23858863 [TBL] [Abstract][Full Text] [Related]
40. Selective recovery of Li and FePO Kumar J; Shen X; Li B; Liu H; Zhao J Waste Manag; 2020 Jul; 113():32-40. PubMed ID: 32505109 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]