These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34325798)

  • 1. Incorporation of proline analogs into recombinant proteins expressed in Escherichia coli.
    Breunig SL; Tirrell DA
    Methods Enzymol; 2021; 656():545-571. PubMed ID: 34325798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residue-Specific Exchange of Proline by Proline Analogs in Fluorescent Proteins: How "Molecular Surgery" of the Backbone Affects Folding and Stability.
    Thi To TM; Kubyshkin V; Schmitt FJ; Budisa N; Friedrich T
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35188129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residue-specific Incorporation of Noncanonical Amino Acids into Model Proteins Using an Escherichia coli Cell-free Transcription-translation System.
    Worst EG; Exner MP; De Simone A; Schenkelberger M; Noireaux V; Budisa N; Ott A
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27500416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of Non-Canonical Amino Acids into Proteins by Global Reassignment of Sense Codons.
    Fang KY; Lieblich SA; Tirrell DA
    Methods Mol Biol; 2018; 1798():173-186. PubMed ID: 29868959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide models XLV: conformational properties of N-formyl-L-methioninamide and its relevance to methionine in proteins.
    Láng A; Csizmadia IG; Perczel A
    Proteins; 2005 Feb; 58(3):571-88. PubMed ID: 15616985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the efficient bio-incorporation of 5-hydroxy-tryptophan in recombinant proteins expressed in Escherichia coli with T7 RNA polymerase-based vectors.
    Oliveira-Souza WP; Bronze F; Broos J; Marcondes MFM; Oliveira V
    Biochem Biophys Res Commun; 2017 Oct; 492(3):343-348. PubMed ID: 28859987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Context-dependent effects of proline residues on the stability and folding pathway of ubiquitin.
    Crespo MD; Platt GW; Bofill R; Searle MS
    Eur J Biochem; 2004 Nov; 271(22):4474-84. PubMed ID: 15560788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial Peptides Produced by Selective Pressure Incorporation of Non-canonical Amino Acids.
    Nickling JH; Baumann T; Schmitt FJ; Bartholomae M; Kuipers OP; Friedrich T; Budisa N
    J Vis Exp; 2018 May; (135):. PubMed ID: 29781997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The disassembly and reassembly of mutants of Escherichia coli heat-labile enterotoxin: replacement of proline 93 does not abolish the reassembly-competent and reassembly-incompetent states.
    Cheesman C; Freedman RB; Ruddock LW
    Biochemistry; 2004 Feb; 43(6):1618-25. PubMed ID: 14769038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the N-terminal proline residue in the catalytic activities of the Escherichia coli Fpg protein.
    Sidorkina OM; Laval J
    J Biol Chem; 2000 Apr; 275(14):9924-9. PubMed ID: 10744666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-frame amber stop codon replacement mutagenesis for the directed evolution of proteins containing non-canonical amino acids: identification of residues open to bio-orthogonal modification.
    Arpino JA; Baldwin AJ; McGarrity AR; Tippmann EM; Jones DD
    PLoS One; 2015; 10(5):e0127504. PubMed ID: 26011713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expressed protein modifications: making synthetic proteins.
    Wiltschi B
    Methods Mol Biol; 2012; 813():211-25. PubMed ID: 22083745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of human liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in Escherichia coli. Role of N-2 proline in degradation of the protein.
    Lange AJ; Li L; Vargas AM; Pilkis SJ
    J Biol Chem; 1993 Apr; 268(11):8078-84. PubMed ID: 8385136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific alteration of cysteine 281, cysteine 344, and cysteine 349 in the proline carrier of Escherichia coli.
    Yamato I; Anraku Y
    J Biol Chem; 1988 Nov; 263(31):16055-7. PubMed ID: 3053687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction, purification and biological activities of recombinant human interleukin-2 analogs.
    Boone T; Chazin V; Kenney W; Swanson E; Altrock B
    Dev Biol Stand; 1988; 69():157-68. PubMed ID: 3066670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a novel proline-rich peptide-binding domain in prolyl 4-hydroxylase.
    Myllyharju J; Kivirikko KI
    EMBO J; 1999 Jan; 18(2):306-12. PubMed ID: 9889187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cotranslational incorporation of a structurally diverse series of proline analogues in an Escherichia coli expression system.
    Kim W; George A; Evans M; Conticello VP
    Chembiochem; 2004 Jul; 5(7):928-36. PubMed ID: 15239049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural role of a conserved active site cis proline in the Thermotoga maritima acetyl esterase from the carbohydrate esterase family 7.
    Singh MK; Manoj N
    Proteins; 2017 Apr; 85(4):694-708. PubMed ID: 28097692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cis proline mutants of ribonuclease A. I. Thermal stability.
    Schultz DA; Baldwin RL
    Protein Sci; 1992 Jul; 1(7):910-6. PubMed ID: 1338975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method of analyzing proline synonymous codons in E. coli.
    Wang ML; Song JN; Xu WB; Li WJ
    FEBS Lett; 2004 Oct; 576(3):336-8. PubMed ID: 15498558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.