These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34326305)

  • 1. Uncovering recent progress in nanostructured light-emitters for information and communication technologies.
    Grillot F; Duan J; Dong B; Huang H
    Light Sci Appl; 2021 Jul; 10(1):156. PubMed ID: 34326305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.
    Kim JH; Aghaeimeibodi S; Richardson CJK; Leavitt RP; Englund D; Waks E
    Nano Lett; 2017 Dec; 17(12):7394-7400. PubMed ID: 29131963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deterministically fabricated solid-state quantum-light sources.
    Rodt S; Reitzenstein S; Heindel T
    J Phys Condens Matter; 2020 Apr; 32(15):153003. PubMed ID: 31791035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced technologies for quantum photonic devices based on epitaxial quantum dots.
    Zhao TM; Chen Y; Yu Y; Li Q; Davanco M; Liu J
    Adv Quantum Technol; 2020 Feb; 3(2):. PubMed ID: 36452403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.
    Chen Y; Zhang J; Zopf M; Jung K; Zhang Y; Keil R; Ding F; Schmidt OG
    Nat Commun; 2016 Jan; 7():10387. PubMed ID: 26813326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Solid-State Source of Single and Entangled Photons at Diamond SiV-Center Transitions Operating at 80K.
    Cao X; Yang J; Fandrich T; Zhang Y; Rugeramigabo EP; Brechtken B; Haug RJ; Zopf M; Ding F
    Nano Lett; 2023 Jul; 23(13):6109-6115. PubMed ID: 37378494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Fluorescence of GaAs Quantum Dots with Near-Unity Photon Indistinguishability.
    Schöll E; Hanschke L; Schweickert L; Zeuner KD; Reindl M; Covre da Silva SF; Lettner T; Trotta R; Finley JJ; Müller K; Rastelli A; Zwiller V; Jöns KD
    Nano Lett; 2019 Apr; 19(4):2404-2410. PubMed ID: 30862165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices.
    Gurioli M; Wang Z; Rastelli A; Kuroda T; Sanguinetti S
    Nat Mater; 2019 Aug; 18(8):799-810. PubMed ID: 31086322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of Polarization-Entangled Photons from Self-Assembled Quantum Dots in a Hybrid Quantum Photonic Chip.
    Jin T; Li X; Liu R; Ou W; Zhu Y; Wang X; Liu J; Huo Y; Ou X; Zhang J
    Nano Lett; 2022 Jan; 22(2):586-593. PubMed ID: 35025517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Yield Fabrication of Entangled Photon Emitters for Hybrid Quantum Networking Using High-Temperature Droplet Epitaxy.
    Basso Basset F; Bietti S; Reindl M; Esposito L; Fedorov A; Huber D; Rastelli A; Bonera E; Trotta R; Sanguinetti S
    Nano Lett; 2018 Jan; 18(1):505-512. PubMed ID: 29239186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entangled Two-Photon Absorption Spectroscopy.
    Schlawin F; Dorfman KE; Mukamel S
    Acc Chem Res; 2018 Sep; 51(9):2207-2214. PubMed ID: 30179458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions.
    Keil R; Zopf M; Chen Y; Höfer B; Zhang J; Ding F; Schmidt OG
    Nat Commun; 2017 May; 8():15501. PubMed ID: 28548092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanowire Quantum Dots Tuned to Atomic Resonances.
    Leandro L; Gunnarsson CP; Reznik R; Jöns KD; Shtrom I; Khrebtov A; Kasama T; Zwiller V; Cirlin G; Akopian N
    Nano Lett; 2018 Nov; 18(11):7217-7221. PubMed ID: 30336054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entanglement Swapping with Photons Generated on Demand by a Quantum Dot.
    Basso Basset F; Rota MB; Schimpf C; Tedeschi D; Zeuner KD; Covre da Silva SF; Reindl M; Zwiller V; Jöns KD; Rastelli A; Trotta R
    Phys Rev Lett; 2019 Oct; 123(16):160501. PubMed ID: 31702339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single Quantum Dot Selection and Tailor-Made Photonic Device Integration using a Nanoscale-Focus Pinspot.
    Choi M; Lee M; Park SL; Kim BS; Jun S; Park SI; Song JD; Ko YH; Cho YH
    Adv Mater; 2023 Jun; 35(26):e2210667. PubMed ID: 36946467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. InP-Substrate-Based Quantum Dashes on a DBR as Single-Photon Emitters at the Third Telecommunication Window.
    Wyborski P; Musiał A; Mrowiński P; Podemski P; Baumann V; Wroński P; Jabeen F; Höfling S; Sęk G
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning enhanced evaluation of semiconductor quantum dots.
    Corcione E; Jakob F; Wagner L; Joos R; Bisquerra A; Schmidt M; Wieck AD; Ludwig A; Jetter M; Portalupi SL; Michler P; Tarín C
    Sci Rep; 2024 Feb; 14(1):4154. PubMed ID: 38378845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bright Quantum Dot Single-Photon Emitters at Telecom Bands Heterogeneously Integrated on Si.
    Holewa P; Sakanas A; Gür UM; Mrowiński P; Huck A; Wang BY; Musiał A; Yvind K; Gregersen N; Syperek M; Semenova E
    ACS Photonics; 2022 Jul; 9(7):2273-2279. PubMed ID: 35880068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanophotonic integrated circuits from nanoresonators grown on silicon.
    Chen R; Ng KW; Ko WS; Parekh D; Lu F; Tran TT; Li K; Chang-Hasnain C
    Nat Commun; 2014 Jul; 5():4325. PubMed ID: 24999601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epitaxial Nanoflag Photonics: Semiconductor Nanoemitters Grown with Their Nanoantennas.
    Sorias O; Kelrich A; Gladstone R; Ritter D; Orenstein M
    Nano Lett; 2017 Oct; 17(10):6011-6017. PubMed ID: 28858507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.