These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34326306)

  • 1. Neural network-based image reconstruction in swept-source optical coherence tomography using undersampled spectral data.
    Zhang Y; Liu T; Singh M; Çetintaş E; Luo Y; Rivenson Y; Larin KV; Ozcan A
    Light Sci Appl; 2021 Jul; 10(1):155. PubMed ID: 34326306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Scale Reconstruction of Undersampled Spectral-Spatial OCT Data for Coronary Imaging Using Deep Learning.
    Li X; Cao S; Liu H; Yao X; Brott BC; Litovsky SH; Song X; Ling Y; Gan Y
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3667-3677. PubMed ID: 35594212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography.
    Adhi M; Liu JJ; Qavi AH; Grulkowski I; Lu CD; Mohler KJ; Ferrara D; Kraus MF; Baumal CR; Witkin AJ; Waheed NK; Hornegger J; Fujimoto JG; Duker JS
    Am J Ophthalmol; 2014 Jun; 157(6):1272-1281.e1. PubMed ID: 24561169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. REAL-TIME FULL-DEPTH VISUALIZATION OF POSTERIOR OCULAR STRUCTURES: Comparison Between Full-Depth Imaging Spectral Domain Optical Coherence Tomography and Swept-Source Optical Coherence Tomography.
    Barteselli G; Bartsch DU; Weinreb RN; Camacho N; Nezgoda JT; Marvasti AH; Freeman WR
    Retina; 2016 Jun; 36(6):1153-61. PubMed ID: 26562563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SANTIS: Sampling-Augmented Neural neTwork with Incoherent Structure for MR image reconstruction.
    Liu F; Samsonov A; Chen L; Kijowski R; Feng L
    Magn Reson Med; 2019 Nov; 82(5):1890-1904. PubMed ID: 31166049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral phase based k-domain interpolation for uniform sampling in swept-source optical coherence tomography.
    Wu T; Ding Z; Wang L; Chen M
    Opt Express; 2011 Sep; 19(19):18430-9. PubMed ID: 21935211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral image reconstruction of optical coherence tomography using one-dimensional deep deconvolution network.
    Lee M; Bang H; Lee E; Won Y; Kim K; Park S; Yoo H; Lee S
    Lasers Surg Med; 2022 Aug; 54(6):895-906. PubMed ID: 35366377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ReconResNet: Regularised residual learning for MR image reconstruction of Undersampled Cartesian and Radial data.
    Chatterjee S; Breitkopf M; Sarasaen C; Yassin H; Rose G; Nürnberger A; Speck O
    Comput Biol Med; 2022 Apr; 143():105321. PubMed ID: 35219188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computationally efficient deep neural network for computed tomography image reconstruction.
    Wu D; Kim K; Li Q
    Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning empowered highly compressive SS-OCT via learnable spectral-spatial sub-sampling.
    Ling Y; Dong Z; Li X; Gan Y; Su Y
    Opt Lett; 2023 Apr; 48(7):1910-1913. PubMed ID: 37221797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT.
    Hillmann D; Bonin T; Lührs C; Franke G; Hagen-Eggert M; Koch P; Hüttmann G
    Opt Express; 2012 Mar; 20(6):6761-76. PubMed ID: 22418560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices.
    Reznicek L; Klein T; Wieser W; Kernt M; Wolf A; Haritoglou C; Kampik A; Huber R; Neubauer AS
    Graefes Arch Clin Exp Ophthalmol; 2014 Jun; 252(6):1009-16. PubMed ID: 24789467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task-based assessment for neural networks: evaluating undersampled MRI reconstructions based on human observer signal detection.
    Herman JD; Roca RE; O'Neill AG; Wong ML; Goud Lingala S; Pineda AR
    J Med Imaging (Bellingham); 2024 Jul; 11(4):045503. PubMed ID: 39144582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sparse OCT: Optimizing compressed sensing in spectral domain optical coherence tomography.
    Liu X; Kang JU
    Proc SPIE Int Soc Opt Eng; 2011; 7904():. PubMed ID: 22611482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of iterative parametric and indirect deep learning-based reconstruction methods in highly undersampled DCE-MR Imaging of the breast.
    Rastogi A; Yalavarthy PK
    Med Phys; 2020 Oct; 47(10):4838-4861. PubMed ID: 32780871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear and planar reflection artifacts on swept-source and spectral-domain optical coherence tomography due to hyperreflective crystalline deposits.
    Fragiotta S; Fernández-Avellaneda P; Breazzano MP; Yannuzzi LA; Curcio CA; Freund KB
    Graefes Arch Clin Exp Ophthalmol; 2020 Mar; 258(3):491-501. PubMed ID: 31879821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An End-to-End Recurrent Neural Network for Radial MR Image Reconstruction.
    Oh C; Chung JY; Han Y
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time domain principal component analysis for rapid, real-time 2D MRI reconstruction from undersampled data.
    Wright M; Dietz B; Yip E; Yun J; Gabos Z; Fallone BG; Wachowicz K
    Med Phys; 2021 Nov; 48(11):6724-6739. PubMed ID: 34528275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self super-resolution of optical coherence tomography images based on deep learning.
    Yuan Z; Yang D; Wang W; Zhao J; Liang Y
    Opt Express; 2023 Aug; 31(17):27566-27581. PubMed ID: 37710829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neural network-based method for spectral distortion correction in photon counting x-ray CT.
    Touch M; Clark DP; Barber W; Badea CT
    Phys Med Biol; 2016 Aug; 61(16):6132-53. PubMed ID: 27469292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.