These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 34326306)
21. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Eo T; Jun Y; Kim T; Jang J; Lee HJ; Hwang D Magn Reson Med; 2018 Nov; 80(5):2188-2201. PubMed ID: 29624729 [TBL] [Abstract][Full Text] [Related]
22. A cross-domain complex convolution neural network for undersampled magnetic resonance image reconstruction. Yuan T; Yang J; Chi J; Yu T; Liu F Magn Reson Imaging; 2024 May; 108():86-97. PubMed ID: 38331053 [TBL] [Abstract][Full Text] [Related]
23. Dual-domain accelerated MRI reconstruction using transformers with learning-based undersampling. Hong GQ; Wei YT; Morley WAW; Wan M; Mertens AJ; Su Y; Cheng HM Comput Med Imaging Graph; 2023 Jun; 106():102206. PubMed ID: 36857952 [TBL] [Abstract][Full Text] [Related]
24. Spectrotemporal CT data acquisition and reconstruction at low dose. Clark DP; Lee CL; Kirsch DG; Badea CT Med Phys; 2015 Nov; 42(11):6317-36. PubMed ID: 26520724 [TBL] [Abstract][Full Text] [Related]
25. Single patient convolutional neural networks for real-time MR reconstruction: coherent low-resolution versus incoherent undersampling. Dietz B; Yun J; Yip E; Gabos Z; Fallone BG; Wachowicz K Phys Med Biol; 2020 Apr; 65(8):08NT03. PubMed ID: 32135531 [TBL] [Abstract][Full Text] [Related]
26. Clinical utility of anterior segment swept-source optical coherence tomography in glaucoma. Angmo D; Nongpiur ME; Sharma R; Sidhu T; Sihota R; Dada T Oman J Ophthalmol; 2016; 9(1):3-10. PubMed ID: 27013821 [TBL] [Abstract][Full Text] [Related]
28. Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit. Lee KK; Mariampillai A; Yu JX; Cadotte DW; Wilson BC; Standish BA; Yang VX Biomed Opt Express; 2012 Jul; 3(7):1557-64. PubMed ID: 22808428 [TBL] [Abstract][Full Text] [Related]
29. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data. Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277 [TBL] [Abstract][Full Text] [Related]
30. SpiNet: A deep neural network for Schatten p-norm regularized medical image reconstruction. Rastogi A; Yalavarthy PK Med Phys; 2021 May; 48(5):2214-2229. PubMed ID: 33525049 [TBL] [Abstract][Full Text] [Related]
31. Real-time dispersion-compensated image reconstruction for compressive sensing spectral domain optical coherence tomography. Xu D; Huang Y; Kang JU J Opt Soc Am A Opt Image Sci Vis; 2014 Sep; 31(9):2064-9. PubMed ID: 25401447 [TBL] [Abstract][Full Text] [Related]
32. Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study. Rastogi A; Brugnara G; Foltyn-Dumitru M; Mahmutoglu MA; Preetha CJ; Kobler E; Pflüger I; Schell M; Deike-Hofmann K; Kessler T; van den Bent MJ; Idbaih A; Platten M; Brandes AA; Nabors B; Stupp R; Bernhardt D; Debus J; Abdollahi A; Gorlia T; Tonn JC; Weller M; Maier-Hein KH; Radbruch A; Wick W; Bendszus M; Meredig H; Kurz FT; Vollmuth P Lancet Oncol; 2024 Mar; 25(3):400-410. PubMed ID: 38423052 [TBL] [Abstract][Full Text] [Related]
33. Performance comparison between 8- and 14-bit-depth imaging in polarization-sensitive swept-source optical coherence tomography. Lu Z; Kasaragod DK; Matcher SJ Biomed Opt Express; 2011 Mar; 2(4):794-804. PubMed ID: 21483604 [TBL] [Abstract][Full Text] [Related]
34. Comparison of Spectral-Domain OCT versus Swept-Source OCT for the Detection of Deep Optic Disc Drusen. Rothenbuehler SP; Malmqvist L; Belmouhand M; Bjerager J; Maloca PM; Larsen M; Hamann S Diagnostics (Basel); 2022 Oct; 12(10):. PubMed ID: 36292204 [TBL] [Abstract][Full Text] [Related]
35. Deep learning-based image enhancement in optical coherence tomography by exploiting interference fringe. Lee W; Nam HS; Seok JY; Oh WY; Kim JW; Yoo H Commun Biol; 2023 Apr; 6(1):464. PubMed ID: 37117279 [TBL] [Abstract][Full Text] [Related]
36. Imaging of the Lamina Cribrosa using Swept-Source Optical Coherence Tomography. Nuyen B; Mansouri K; N Weinreb R J Curr Glaucoma Pract; 2012; 6(3):113-9. PubMed ID: 26997766 [TBL] [Abstract][Full Text] [Related]
37. Full-range swept source optical coherence tomography based on carrier frequency by transmissive dispersive optical delay line. Wu T; Ding Z; Wang C; Chen M J Biomed Opt; 2011 Dec; 16(12):126008. PubMed ID: 22191925 [TBL] [Abstract][Full Text] [Related]
38. Advances in swept-source optical coherence tomography and optical coherence tomography angiography. Zheng F; Deng X; Zhang Q; He J; Ye P; Liu S; Li P; Zhou J; Fang X Adv Ophthalmol Pract Res; 2023; 3(2):67-79. PubMed ID: 37846376 [TBL] [Abstract][Full Text] [Related]
39. Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device. Hahn P; Migacz J; O'Donnell R; Day S; Lee A; Lin P; Vann R; Kuo A; Fekrat S; Mruthyunjaya P; Postel EA; Izatt JA; Toth CA Retina; 2013; 33(7):1328-37. PubMed ID: 23538579 [TBL] [Abstract][Full Text] [Related]
40. Deep learning based spectral extrapolation for dual-source, dual-energy x-ray computed tomography. Clark DP; Schwartz FR; Marin D; Ramirez-Giraldo JC; Badea CT Med Phys; 2020 Sep; 47(9):4150-4163. PubMed ID: 32531114 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]