BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 34326359)

  • 1. A piggyBac-based platform for genome editing and clonal rhesus macaque iPSC line derivation.
    Rodriguez-Polo I; Mißbach S; Petkov S; Mattern F; Maierhofer A; Grządzielewska I; Tereshchenko Y; Urrutia-Cabrera D; Haaf T; Dressel R; Bartels I; Behr R
    Sci Rep; 2021 Jul; 11(1):15439. PubMed ID: 34326359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhesus iPSC Safe Harbor Gene-Editing Platform for Stable Expression of Transgenes in Differentiated Cells of All Germ Layers.
    Hong SG; Yada RC; Choi K; Carpentier A; Liang TJ; Merling RK; Sweeney CL; Malech HL; Jung M; Corat MAF; AlJanahi AA; Lin Y; Liu H; Tunc I; Wang X; Palisoc M; Pittaluga S; Boehm M; Winkler T; Zou J; Dunbar CE
    Mol Ther; 2017 Jan; 25(1):44-53. PubMed ID: 28129126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-Based Safe-Harbor Gene Editing in Rhesus iPSCs.
    Yada RC; Ostrominski JW; Tunc I; Hong SG; Zou J; Dunbar CE
    Curr Protoc Stem Cell Biol; 2017 Nov; 43():5A.11.1-5A.11.14. PubMed ID: 29140568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Human Primate iPSC Generation, Cultivation, and Cardiac Differentiation under Chemically Defined Conditions.
    Stauske M; Rodriguez Polo I; Haas W; Knorr DY; Borchert T; Streckfuss-Bömeke K; Dressel R; Bartels I; Tiburcy M; Zimmermann WH; Behr R
    Cells; 2020 May; 9(6):. PubMed ID: 32485910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Footprint-free gene mutation correction in induced pluripotent stem cell (iPSC) derived from recessive dystrophic epidermolysis bullosa (RDEB) using the CRISPR/Cas9 and piggyBac transposon system.
    Itoh M; Kawagoe S; Tamai K; Nakagawa H; Asahina A; Okano HJ
    J Dermatol Sci; 2020 Jun; 98(3):163-172. PubMed ID: 32376152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Derivation of Equine-Induced Pluripotent Stem Cell Lines Using a piggyBac Transposon Delivery System and Temporal Control of Transgene Expression.
    Nagy K; Nagy A
    Methods Mol Biol; 2015; 1330():79-88. PubMed ID: 26621591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon.
    Yusa K; Rad R; Takeda J; Bradley A
    Nat Methods; 2009 May; 6(5):363-9. PubMed ID: 19337237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The piggyBac Transposon as a Platform Technology for Somatic Cell Reprogramming Studies in Mouse.
    Woltjen K; Kim SI; Nagy A
    Methods Mol Biol; 2016; 1357():1-22. PubMed ID: 26126450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells.
    Geng BC; Choi KH; Wang SZ; Chen P; Pan XD; Dong NG; Ko JK; Zhu H
    Acta Pharmacol Sin; 2020 Nov; 41(11):1427-1432. PubMed ID: 32555510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. piggyBac Transposon Mediated Reprogramming and Flow Cytometry Analysis of CD44 and ICAM1 Cell-Surface Marker Changes.
    Brightwell S; Kaji K
    Methods Mol Biol; 2016; 1357():285-93. PubMed ID: 25410291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Episomal Reprogramming of Human Peripheral Blood Mononuclear Cells into Pluripotency.
    Wen W; Cheng T; Zhang XB
    Methods Mol Biol; 2021; 2239():117-133. PubMed ID: 33226616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of single guided Cas9 nickase to facilitate precise and efficient genome editing in human iPSCs.
    Li PP; Margolis RL
    Sci Rep; 2021 May; 11(1):9865. PubMed ID: 33972655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transgene-Free Cynomolgus Monkey iPSCs Generated under Chemically Defined Conditions.
    Tereshchenko Y; Esiyok N; Garea-Rodríguez E; Repetto D; Behr R; Rodríguez-Polo I
    Cells; 2024 Mar; 13(6):. PubMed ID: 38534402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies.
    Wang G; Yang L; Grishin D; Rios X; Ye LY; Hu Y; Li K; Zhang D; Church GM; Pu WT
    Nat Protoc; 2017 Jan; 12(1):88-103. PubMed ID: 27929521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming.
    Talluri TR; Kumar D; Glage S; Garrels W; Ivics Z; Debowski K; Behr R; Niemann H; Kues WA
    Cell Reprogram; 2015 Apr; 17(2):131-40. PubMed ID: 25826726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9.
    Yumlu S; Stumm J; Bashir S; Dreyer AK; Lisowski P; Danner E; Kühn R
    Methods; 2017 May; 121-122():29-44. PubMed ID: 28522326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9 Genome Editing of Human-Induced Pluripotent Stem Cells Followed by Granulocytic Differentiation.
    Dannenmann B; Nasri M; Welte K; Skokowa J
    Methods Mol Biol; 2020; 2115():471-483. PubMed ID: 32006418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation and Cultivation of Transgene-Free Macaque and Baboon iPSCs Under Chemically Defined Conditions.
    Rodríguez-Polo I; Stauske M; Behr R
    Methods Mol Biol; 2022; 2454():697-716. PubMed ID: 33772458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Level Precise Knockin of iPSCs by Simultaneous Reprogramming and Genome Editing of Human Peripheral Blood Mononuclear Cells.
    Wen W; Cheng X; Fu Y; Meng F; Zhang JP; Zhang L; Li XL; Yang Z; Xu J; Zhang F; Botimer GD; Yuan W; Sun C; Cheng T; Zhang XB
    Stem Cell Reports; 2018 Jun; 10(6):1821-1834. PubMed ID: 29754960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.
    Termglinchan V; Seeger T; Chen C; Wu JC; Karakikes I
    Methods Mol Biol; 2017; 1521():55-68. PubMed ID: 27910041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.