These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 34326702)
1. Allometry of carbon and nitrogen content and growth rate in a diverse range of coccolithophores. Villiot N; Poulton AJ; Butcher ET; Daniels LR; Coggins A J Plankton Res; 2021; 43(4):511-526. PubMed ID: 34326702 [TBL] [Abstract][Full Text] [Related]
2. A role for diatom-like silicon transporters in calcifying coccolithophores. Durak GM; Taylor AR; Walker CE; Probert I; de Vargas C; Audic S; Schroeder D; Brownlee C; Wheeler GL Nat Commun; 2016 Feb; 7():10543. PubMed ID: 26842659 [TBL] [Abstract][Full Text] [Related]
3. The Ecology, Biogeochemistry, and Optical Properties of Coccolithophores. Balch WM Ann Rev Mar Sci; 2018 Jan; 10():71-98. PubMed ID: 29298138 [TBL] [Abstract][Full Text] [Related]
4. Elemental stoichiometry of the key calcifying marine phytoplankton Emiliania huxleyi under ocean climate change: A meta-analysis. Sheward RM; Liefer JD; Irwin AJ; Finkel ZV Glob Chang Biol; 2023 Aug; 29(15):4259-4278. PubMed ID: 37279257 [TBL] [Abstract][Full Text] [Related]
5. Malformation in coccolithophores in low pH waters: evidences from the eastern Arabian Sea. Shetye S; Gazi S; Manglavil A; Shenoy D; Kurian S; Pratihary A; Shirodkar G; Mohan R; Dias A; Naik H; Gauns M; Nandakumar K; Borker S Environ Sci Pollut Res Int; 2023 Mar; 30(14):42351-42366. PubMed ID: 36648723 [TBL] [Abstract][Full Text] [Related]
6. The requirement for calcification differs between ecologically important coccolithophore species. Walker CE; Taylor AR; Langer G; Durak GM; Heath S; Probert I; Tyrrell T; Brownlee C; Wheeler GL New Phytol; 2018 Oct; 220(1):147-162. PubMed ID: 29916209 [TBL] [Abstract][Full Text] [Related]
7. Intraspecific Differences in Biogeochemical Responses to Thermal Change in the Coccolithophore Emiliania huxleyi. Matson PG; Ladd TM; Halewood ER; Sangodkar RP; Chmelka BF; Iglesias-Rodriguez MD PLoS One; 2016; 11(9):e0162313. PubMed ID: 27584038 [TBL] [Abstract][Full Text] [Related]
8. Disentangling the Effects of Ocean Carbonation and Acidification on Elemental Contents and Macromolecules of the Coccolithophore Xie E; Xu K; Li Z; Li W; Yi X; Li H; Han Y; Zhang H; Zhang Y Front Microbiol; 2021; 12():737454. PubMed ID: 34745039 [TBL] [Abstract][Full Text] [Related]
9. Two-sided effects of the organic phosphorus phytate on a globally important marine coccolithophorid phytoplankton. Li J; Zhang K; Li L; Wang Y; Wang C; Lin S Microbiol Spectr; 2023 Sep; 11(5):e0125523. PubMed ID: 37702480 [TBL] [Abstract][Full Text] [Related]
10. CASCADE: Dataset of extant coccolithophore size, carbon content and global distribution. de Vries J; Poulton AJ; Young JR; Monteiro FM; Sheward RM; Johnson R; Hagino K; Ziveri P; Wolf LJ Sci Data; 2024 Aug; 11(1):920. PubMed ID: 39181903 [TBL] [Abstract][Full Text] [Related]
11. Stable isotope fractionation of strontium in coccolithophore calcite: Influence of temperature and carbonate chemistry. Müller MN; Krabbenhöft A; Vollstaedt H; Brandini FP; Eisenhauer A Geobiology; 2018 May; 16(3):297-306. PubMed ID: 29431278 [TBL] [Abstract][Full Text] [Related]
12. Detection of Phagotrophy in the Marine Phytoplankton Group of the Coccolithophores (Calcihaptophycidae, Haptophyta) During Nutrient-replete and Phosphate-limited Growth. Avrahami Y; Frada MJ J Phycol; 2020 Aug; 56(4):1103-1108. PubMed ID: 32233088 [TBL] [Abstract][Full Text] [Related]
13. Detection of Coccolithophore Blooms With BioGeoChemical-Argo Floats. Terrats L; Claustre H; Cornec M; Mangin A; Neukermans G Geophys Res Lett; 2020 Dec; 47(23):e2020GL090559. PubMed ID: 33380764 [TBL] [Abstract][Full Text] [Related]
14. Coccolithophore calcification studied by single-cell impedance cytometry: Towards single-cell PIC:POC measurements. de Bruijn DS; Ter Braak PM; Van de Waal DB; Olthuis W; van den Berg A Biosens Bioelectron; 2021 Feb; 173():112808. PubMed ID: 33221507 [TBL] [Abstract][Full Text] [Related]
15. A voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores. Taylor AR; Chrachri A; Wheeler G; Goddard H; Brownlee C PLoS Biol; 2011 Jun; 9(6):e1001085. PubMed ID: 21713028 [TBL] [Abstract][Full Text] [Related]
16. Physiological responses of coccolithophores to abrupt exposure of naturally low pH deep seawater. Iglesias-Rodriguez MD; Jones BM; Blanco-Ameijeiras S; Greaves M; Huete-Ortega M; Lebrato M PLoS One; 2017; 12(7):e0181713. PubMed ID: 28750008 [TBL] [Abstract][Full Text] [Related]
17. Coccolithophores: an environmentally significant and understudied phytoplankton group in the Indian Ocean. Arundhathy M; Jyothibabu R; Santhikrishnan S; Albin KJ; Parthasarathi S; Rashid CP Environ Monit Assess; 2021 Feb; 193(3):144. PubMed ID: 33629200 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the molecular mechanisms of silicon uptake in coccolithophores. Ratcliffe S; Meyer EM; Walker CE; Knight M; McNair HM; Matson PG; Iglesias-Rodriguez D; Brzezinski M; Langer G; Sadekov A; Greaves M; Brownlee C; Curnow P; Taylor AR; Wheeler GL Environ Microbiol; 2023 Feb; 25(2):315-330. PubMed ID: 36397254 [TBL] [Abstract][Full Text] [Related]
19. Meta-analysis reveals responses of coccolithophores and diatoms to warming. Wang J; Zeng C; Feng Y Mar Environ Res; 2024 Jan; 193():106275. PubMed ID: 37992480 [TBL] [Abstract][Full Text] [Related]
20. Representative Diatom and Coccolithophore Species Exhibit Divergent Responses throughout Simulated Upwelling Cycles. Lampe RH; Hernandez G; Lin YY; Marchetti A mSystems; 2021 Mar; 6(2):. PubMed ID: 33785571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]