These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34327239)

  • 41. Metal Nanoparticles/MoS
    Er E; Sánchez-Iglesias A; Silvestri A; Arnaiz B; Liz-Marzán LM; Prato M; Criado A
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8823-8831. PubMed ID: 33583183
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Process of in situ forming well-aligned zinc oxide nanorod arrays on wood substrate using a two-step bottom-up method.
    Liu Y; Fu Y; Yu H; Liu Y
    J Colloid Interface Sci; 2013 Oct; 407():116-21. PubMed ID: 23880522
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Seesawed fluorescence nano-aptasensor based on highly vertical ZnO nanorods and three-dimensional quantitative fluorescence imaging for enhanced detection accuracy of ATP.
    Shrivastava S; Triet NM; Son YM; Lee WI; Lee NE
    Biosens Bioelectron; 2017 Apr; 90():450-458. PubMed ID: 27825530
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fundamental Properties of One-Dimensional Zinc Oxide Nanomaterials and Implementations in Various Detection Modes of Enhanced Biosensing.
    Hahm JI
    Annu Rev Phys Chem; 2016 May; 67():691-717. PubMed ID: 27215822
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrochemical cortisol immunosensors based on sonochemically synthesized zinc oxide 1D nanorods and 2D nanoflakes.
    Vabbina PK; Kaushik A; Pokhrel N; Bhansali S; Pala N
    Biosens Bioelectron; 2015 Jan; 63():124-130. PubMed ID: 25064820
    [TBL] [Abstract][Full Text] [Related]  

  • 46. C@ZnO nanorod array-based hydrazine electrochemical sensor with improved sensitivity and stability.
    Liu J; Li Y; Jiang J; Huang X
    Dalton Trans; 2010 Oct; 39(37):8693-7. PubMed ID: 20714619
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultra-Low Level Detection of L-Histidine Using Solution-Processed ZnO Nanorod on Flexible Substrate.
    Sasmal M; Maiti TK; Bhattacharyya TK
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):634-40. PubMed ID: 25993704
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesizing, characterizing, and toxicity evaluating of Phycocyanin-ZnO nanorod composites: A back to nature approaches.
    Davaeifar S; Modarresi MH; Mohammadi M; Hashemi E; Shafiei M; Maleki H; Vali H; Zahiri HS; Noghabi KA
    Colloids Surf B Biointerfaces; 2019 Mar; 175():221-230. PubMed ID: 30537618
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrogenerated chemiluminescence of ZnO nanorods and its sensitive detection of cytochrome C.
    Zhang XL; Tang ZR; Dong YP; Wang CM
    Talanta; 2018 Mar; 179():139-144. PubMed ID: 29310213
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electronic nose based on multipatterns of ZnO nanorods on a quartz resonator with remote electrodes.
    Ko W; Jung N; Lee M; Yun M; Jeon S
    ACS Nano; 2013 Aug; 7(8):6685-90. PubMed ID: 23883314
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ZnO nanorod coating for solid phase microextraction and its applications for the analysis of aldehydes in instant noodle samples.
    Ji J; Liu H; Chen J; Zeng J; Huang J; Gao L; Wang Y; Chen X
    J Chromatogr A; 2012 Jul; 1246():22-7. PubMed ID: 22342186
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protective antigen detection using horizontally stacked hexagonal ZnO platelets.
    Park HY; Go HY; Kalme S; Mane RS; Han SH; Yoon MY
    Anal Chem; 2009 Jun; 81(11):4280-4. PubMed ID: 19400578
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication of ZnO nanorods for gas sensing applications using hydrothermal method.
    Nguyen CP; La PP; Trinh TT; Le TA; Bong S; Jang K; Ahn S; Yi J
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6261-5. PubMed ID: 25936100
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Zinc oxide nanorod based immunosensing platform for the determination of human leukemic cells.
    Tamashevski A; Harmaza Y; Viter R; Jevdokimovs D; Poplausks R; Slobozhanina E; Mikoliunaite L; Erts D; Ramanaviciene A; Ramanavicius A
    Talanta; 2019 Aug; 200():378-386. PubMed ID: 31036199
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Non-enzymatic fluorescent glucose sensor using vertically aligned ZnO nanotubes grown by a one-step, seedless hydrothermal method.
    Mai HH; Tran DH; Janssens E
    Mikrochim Acta; 2019 Mar; 186(4):245. PubMed ID: 30879198
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Doping Ag in ZnO Nanorods to Improve the Performance of Related Enzymatic Glucose Sensors.
    Zhou F; Jing W; Liu P; Han D; Jiang Z; Wei Z
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28953217
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel upconversion luminescence derived photoelectrochemical immunoassay: ultrasensitive detection to alpha-fetoprotein.
    Chen X; Xu W; Jiang Y; Pan G; Zhou D; Zhu J; Wang H; Chen C; Li D; Song H
    Nanoscale; 2017 Nov; 9(42):16357-16364. PubMed ID: 29052675
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microchip device with 64-site electrode array for multiplexed immunoassay of cell surface antigens based on electrochemiluminescence resonance energy transfer.
    Wu MS; Shi HW; He LJ; Xu JJ; Chen HY
    Anal Chem; 2012 May; 84(9):4207-13. PubMed ID: 22494075
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrowetting of superhydrophobic ZnO nanorods.
    Campbell JL; Breedon M; Latham K; Kalantar-zadeh K
    Langmuir; 2008 May; 24(9):5091-8. PubMed ID: 18373379
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bifunctional polydopamine thin film coated zinc oxide nanorods for label-free photoelectrochemical immunoassay.
    Yang Y; Hu W
    Talanta; 2017 May; 166():141-147. PubMed ID: 28213214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.