These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34327298)

  • 21. Recognizing non-native spoken words in background noise increases interference from the native language.
    Hintz F; Voeten CC; Scharenborg O
    Psychon Bull Rev; 2023 Aug; 30(4):1549-1563. PubMed ID: 36544064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of training on word-recognition performance in noise for young normal-hearing and older hearing-impaired listeners.
    Burk MH; Humes LE; Amos NE; Strauser LE
    Ear Hear; 2006 Jun; 27(3):263-78. PubMed ID: 16672795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The time course of lexical competition during spoken word recognition in Mandarin Chinese: an event-related potential study.
    Huang X; Yang JC
    Neuroreport; 2016 Jan; 27(2):67-72. PubMed ID: 26619230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lexical and age effects on word recognition in noise in normal-hearing children.
    Ren C; Liu S; Liu H; Kong Y; Liu X; Li S
    Int J Pediatr Otorhinolaryngol; 2015 Dec; 79(12):2023-7. PubMed ID: 26545791
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of recognition performances in speech-spectrum noise by listeners with normal hearing on PB-50, CID W-22, NU-6, W-1 spondaic words, and monosyllabic digits spoken by the same speaker.
    Wilson RH; McArdle R; Roberts H
    J Am Acad Audiol; 2008 Jun; 19(6):496-506. PubMed ID: 19253782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Impact of Age, Background Noise, Semantic Ambiguity, and Hearing Loss on Recognition Memory for Spoken Sentences.
    Koeritzer MA; Rogers CS; Van Engen KJ; Peelle JE
    J Speech Lang Hear Res; 2018 Mar; 61(3):740-751. PubMed ID: 29450493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tracing attention and the activation flow of spoken word planning using eye movements.
    Roelofs A
    J Exp Psychol Learn Mem Cogn; 2008 Mar; 34(2):353-68. PubMed ID: 18315411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The dynamics of lexical competition during spoken word recognition.
    Magnuson JS; Dixon JA; Tanenhaus MK; Aslin RN
    Cogn Sci; 2007 Feb; 31(1):133-56. PubMed ID: 21635290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Is the time course of lexical activation and competition in spoken word recognition affected by adult aging? An event-related potential (ERP) study.
    Hunter CR
    Neuropsychologia; 2016 Oct; 91():451-464. PubMed ID: 27616158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Vocal Emotion on Memory in Younger and Older Adults.
    Pichora-Fuller MK; Dupuis K; Smith SL
    Exp Aging Res; 2016; 42(1):14-30. PubMed ID: 26683039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adults show less sensitivity to phonetic detail in unfamiliar words, too.
    White KS; Yee E; Blumstein SE; Morgan JL
    J Mem Lang; 2013 May; 68(4):362-378. PubMed ID: 24065868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of two word-recognition tasks in multitalker babble: Speech Recognition in Noise Test (SPRINT) and Words-in-Noise Test (WIN).
    Wilson RH; Cates WB
    J Am Acad Audiol; 2008; 19(7):548-56. PubMed ID: 19248731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. When half a word is enough: infants can recognize spoken words using partial phonetic information.
    Fernald A; Swingley D; Pinto JP
    Child Dev; 2001; 72(4):1003-15. PubMed ID: 11480931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural evidence for phonologically based language production deficits in older adults: An fMRI investigation of age-related differences in picture-word interference.
    Rizio AA; Moyer KJ; Diaz MT
    Brain Behav; 2017 Apr; 7(4):e00660. PubMed ID: 28413708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phonological ambiguity and lexical ambiguity: effects on visual and auditory word recognition.
    Frost R; Feldman LB; Katz L
    J Exp Psychol Learn Mem Cogn; 1990 Jul; 16(4):569-80. PubMed ID: 2142953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linguistic Context Versus Semantic Competition in Word Recognition by Younger and Older Adults With Cochlear Implants.
    Amichetti NM; Atagi E; Kong YY; Wingfield A
    Ear Hear; 2018; 39(1):101-109. PubMed ID: 28700448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Orthographic Activation in L2 Spoken Word Recognition Depends on Proficiency: Evidence from Eye-Tracking.
    Veivo O; Järvikivi J; Porretta V; Hyönä J
    Front Psychol; 2016; 7():1120. PubMed ID: 27512381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oscillatory brain responses in spoken word production reflect lexical frequency and sentential constraint.
    Piai V; Roelofs A; Maris E
    Neuropsychologia; 2014 Jan; 53():146-56. PubMed ID: 24291513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Children With Cochlear Implants Use Semantic Prediction to Facilitate Spoken Word Recognition.
    Blomquist C; Newman RS; Huang YT; Edwards J
    J Speech Lang Hear Res; 2021 May; 64(5):1636-1649. PubMed ID: 33887149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Syllable Frequency and Spoken Word Recognition: An Inhibitory Effect.
    González-Alvarez J; Palomar-García MA
    Psychol Rep; 2016 Aug; 119(1):263-75. PubMed ID: 27287267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.