BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34327899)

  • 1. [Advances and application of enrichment technology in SH2 superbinder-based tyrosine phosphoproteomics].
    Men L; Xu F; Xu P
    Sheng Wu Gong Cheng Xue Bao; 2021 Jul; 37(7):2334-2341. PubMed ID: 34327899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SH2 Superbinder Modified Monolithic Capillary Column for the Sensitive Analysis of Protein Tyrosine Phosphorylation.
    Yao Y; Bian Y; Dong M; Wang Y; Lv J; Chen L; Wang H; Mao J; Dong J; Ye M
    J Proteome Res; 2018 Jan; 17(1):243-251. PubMed ID: 29083189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Step SH2 Superbinder-Based Approach for Sensitive Analysis of Tyrosine Phosphoproteome.
    Yao Y; Wang Y; Wang S; Liu X; Liu Z; Li Y; Fang Z; Mao J; Zheng Y; Ye M
    J Proteome Res; 2019 Apr; 18(4):1870-1879. PubMed ID: 30875230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of novel affinity reagents for detecting protein tyrosine phosphorylation based on superbinder SH2 domain in tumor cells.
    Ke AQ; Liu AD; Gao YN; Luo DN; Li ZF; Yu YQ; Liu JY; Xu H; Cao X
    Anal Chim Acta; 2018 Nov; 1032():138-146. PubMed ID: 30143211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive, Robust, and Cost-Effective Approach for Tyrosine Phosphoproteome Analysis.
    Dong M; Bian Y; Wang Y; Dong J; Yao Y; Deng Z; Qin H; Zou H; Ye M
    Anal Chem; 2017 Sep; 89(17):9307-9314. PubMed ID: 28796482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Application of tyrosine phosphoproteomics in biomedical research: a review].
    Li K; Xu F; Xu P
    Sheng Wu Gong Cheng Xue Bao; 2021 Jan; 37(1):100-111. PubMed ID: 33501793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder.
    Bian Y; Li L; Dong M; Liu X; Kaneko T; Cheng K; Liu H; Voss C; Cao X; Wang Y; Litchfield D; Ye M; Li SS; Zou H
    Nat Chem Biol; 2016 Nov; 12(11):959-966. PubMed ID: 27642862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superbinder SH2 domains act as antagonists of cell signaling.
    Kaneko T; Huang H; Cao X; Li X; Li C; Voss C; Sidhu SS; Li SS
    Sci Signal; 2012 Sep; 5(243):ra68. PubMed ID: 23012655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. (Arg)
    Liu AD; Xu H; Gao YN; Luo DN; Li ZF; Voss C; Li SSC; Cao X
    J Exp Clin Cancer Res; 2018 Jul; 37(1):138. PubMed ID: 29976230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Tyrosine Phosphoproteome Analysis Approach Enabled by Selective Dephosphorylation with Protein Tyrosine Phosphatase.
    Liu X; Dong M; Yao Y; Wang Y; Mao J; Hu L; Yao L; Ye M
    Anal Chem; 2022 Mar; 94(10):4155-4164. PubMed ID: 35239328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Phosphotyrosine-Dependent Signaling Profiling in Living Cells by Two-Dimensional Proximity Proteomics.
    Kong Q; Ke M; Weng Y; Qin Y; He A; Li P; Cai Z; Tian R
    J Proteome Res; 2022 Nov; 21(11):2727-2735. PubMed ID: 36280823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-O-(2-malonyl)tyrosine: a new phosphotyrosyl mimetic for the preparation of Src homology 2 domain inhibitory peptides.
    Ye B; Akamatsu M; Shoelson SE; Wolf G; Giorgetti-Peraldi S; Yan X; Roller PP; Burke TR
    J Med Chem; 1995 Oct; 38(21):4270-5. PubMed ID: 7473554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated and High-Throughput Approach for Sensitive Analysis of Tyrosine Phosphoproteome.
    Kong Q; Weng Y; Zheng Z; Chen W; Li P; Cai Z; Tian R
    Anal Chem; 2022 Oct; 94(40):13728-13736. PubMed ID: 36179360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biphasic Affinity Chromatographic Approach for Deep Tyrosine Phosphoproteome Analysis.
    Deng Z; Dong M; Wang Y; Dong J; Li SS; Zou H; Ye M
    Anal Chem; 2017 Feb; 89(4):2405-2410. PubMed ID: 28192900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonhydrolyzable phosphotyrosyl mimetics for the preparation of phosphatase-resistant SH2 domain inhibitors.
    Burke TR; Smyth MS; Otaka A; Nomizu M; Roller PP; Wolf G; Case R; Shoelson SE
    Biochemistry; 1994 May; 33(21):6490-4. PubMed ID: 7515682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-Scale Phosphoproteomics Reveals Shp-2 Phosphatase-Dependent Regulators of Pdgf Receptor Signaling.
    Batth TS; Papetti M; Pfeiffer A; Tollenaere MAX; Francavilla C; Olsen JV
    Cell Rep; 2018 Mar; 22(10):2784-2796. PubMed ID: 29514104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered SH2 domains with tailored specificities and enhanced affinities for phosphoproteome analysis.
    Veggiani G; Huang H; Yates BP; Tong J; Kaneko T; Joshi R; Li SSC; Moran MF; Gish G; Sidhu SS
    Protein Sci; 2019 Feb; 28(2):403-413. PubMed ID: 30431205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative phosphoproteomics to characterize signaling networks.
    Rigbolt KT; Blagoev B
    Semin Cell Dev Biol; 2012 Oct; 23(8):863-71. PubMed ID: 22677334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive Approaches for the Assay of the Global Protein Tyrosine Phosphorylation in Complex Samples Using a Mutated SH2 Domain.
    Li Y; Wang Y; Dong M; Zou H; Ye M
    Anal Chem; 2017 Feb; 89(4):2304-2311. PubMed ID: 28192934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoproteomics technologies and applications in plant biology research.
    Li J; Silva-Sanchez C; Zhang T; Chen S; Li H
    Front Plant Sci; 2015; 6():430. PubMed ID: 26136758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.