These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34327906)

  • 1. [Application of CRISPR in evolution analysis, detecting and typing, virulence and antibiotic resistance regulation in food-borne pathogens].
    Bai Z; Wang W; Ji X; Xiao Y; Zhang S; Wang Z; Li H; Dong Q
    Sheng Wu Gong Cheng Xue Bao; 2021 Jul; 37(7):2414-2424. PubMed ID: 34327906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppressing the CRISPR/Cas adaptive immune system in bacterial infections.
    Gholizadeh P; Aghazadeh M; Asgharzadeh M; Kafil HS
    Eur J Clin Microbiol Infect Dis; 2017 Nov; 36(11):2043-2051. PubMed ID: 28601970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploitation of the Cooperative Behaviors of Anti-CRISPR Phages.
    Chevallereau A; Meaden S; Fradet O; Landsberger M; Maestri A; Biswas A; Gandon S; van Houte S; Westra ER
    Cell Host Microbe; 2020 Feb; 27(2):189-198.e6. PubMed ID: 31901522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.
    Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G
    BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost and benefits of clustered regularly interspaced short palindromic repeats spacer acquisition.
    Bradde S; Mora T; Walczak AM
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180095. PubMed ID: 30905281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas Technologies and Applications in Food Bacteria.
    Stout E; Klaenhammer T; Barrangou R
    Annu Rev Food Sci Technol; 2017 Feb; 8():413-437. PubMed ID: 28245154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association of CRISPR/Cas evolution with Vibrio parahaemolyticus virulence factors and genotypes.
    Sun H; Li Y; Shi X; Lin Y; Qiu Y; Zhang J; Liu Y; Jiang M; Zhang Z; Chen Q; Sun Q; Hu Q
    Foodborne Pathog Dis; 2015 Jan; 12(1):68-73. PubMed ID: 25455966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How bacteria control the CRISPR-Cas arsenal.
    Leon LM; Mendoza SD; Bondy-Denomy J
    Curr Opin Microbiol; 2018 Apr; 42():87-95. PubMed ID: 29169146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas system, antibiotic resistance and virulence in bacteria: Through a common lens.
    Roy S; Naha S; Rao A; Basu S
    Prog Mol Biol Transl Sci; 2021; 178():123-174. PubMed ID: 33685595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity of CRISPR/Cas system in Clostridium perfringens.
    Long J; Xu Y; Ou L; Yang H; Xi Y; Chen S; Duan G
    Mol Genet Genomics; 2019 Oct; 294(5):1263-1275. PubMed ID: 31134321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR technologies for bacterial systems: Current achievements and future directions.
    Choi KR; Lee SY
    Biotechnol Adv; 2016 Nov; 34(7):1180-1209. PubMed ID: 27566508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering and shaping bacterial diversity through CRISPR.
    Briner AE; Barrangou R
    Curr Opin Microbiol; 2016 Jun; 31():101-108. PubMed ID: 27045713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Why so rare if so essentiel: the determinants of the sparse distribution of CRISPR-Cas systems in bacterial genomes].
    Bernheim A
    Biol Aujourdhui; 2017; 211(4):255-264. PubMed ID: 29956652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustered regularly interspaced short palindromic repeats-Cas system: diversity and regulation in Enterobacteriaceae.
    Kushwaha SK; Narasimhan LP; Chithananthan C; Marathe SA
    Future Microbiol; 2022 Oct; 17():1249-1267. PubMed ID: 36006039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems.
    Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Biology of CRISPR-Cas: Backward and Forward.
    Hille F; Richter H; Wong SP; Bratovič M; Ressel S; Charpentier E
    Cell; 2018 Mar; 172(6):1239-1259. PubMed ID: 29522745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conquering CRISPR: how phages overcome bacterial adaptive immunity.
    Malone LM; Birkholz N; Fineran PC
    Curr Opin Biotechnol; 2021 Apr; 68():30-36. PubMed ID: 33113496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-CRISPR: discovery, mechanism and function.
    Pawluk A; Davidson AR; Maxwell KL
    Nat Rev Microbiol; 2018 Jan; 16(1):12-17. PubMed ID: 29062071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Based Technologies and the Future of Food Science.
    Selle K; Barrangou R
    J Food Sci; 2015 Nov; 80(11):R2367-72. PubMed ID: 26444151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas systems in oral microbiome: From immune defense to physiological regulation.
    Gong T; Zeng J; Tang B; Zhou X; Li Y
    Mol Oral Microbiol; 2020 Apr; 35(2):41-48. PubMed ID: 31995666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.