These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34327990)

  • 1. xDeep-AcPEP: Deep Learning Method for Anticancer Peptide Activity Prediction Based on Convolutional Neural Network and Multitask Learning.
    Chen J; Cheong HH; Siu SWI
    J Chem Inf Model; 2021 Aug; 61(8):3789-3803. PubMed ID: 34327990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convolutional neural networks with image representation of amino acid sequences for protein function prediction.
    Sara ST; Hasan MM; Ahmad A; Shatabda S
    Comput Biol Chem; 2021 Jun; 92():107494. PubMed ID: 33930742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Anticancer Peptides from the Genome of
    Cheong HH; Zuo W; Chen J; Un CW; Si YW; Wong KH; Kwok HF; Siu SWI
    J Chem Inf Model; 2024 Aug; 64(15):6174-6189. PubMed ID: 39008832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ACPPfel: Explainable deep ensemble learning for anticancer peptides prediction based on feature optimization.
    Liu M; Wu T; Li X; Zhu Y; Chen S; Huang J; Zhou F; Liu H
    Front Genet; 2024; 15():1352504. PubMed ID: 38487252
    [No Abstract]   [Full Text] [Related]  

  • 6. MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks.
    Lin YM; Chen CT; Chang JM
    BMC Genomics; 2019 Dec; 20(Suppl 9):906. PubMed ID: 31874640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Scale Modeling of Multispecies Acute Toxicity End Points Using Consensus of Multitask Deep Learning Methods.
    Jain S; Siramshetty VB; Alves VM; Muratov EN; Kleinstreuer N; Tropsha A; Nicklaus MC; Simeonov A; Zakharov AV
    J Chem Inf Model; 2021 Feb; 61(2):653-663. PubMed ID: 33533614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides.
    Ahmed S; Muhammod R; Khan ZH; Adilina S; Sharma A; Shatabda S; Dehzangi A
    Sci Rep; 2021 Dec; 11(1):23676. PubMed ID: 34880291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An algorithm for using deep learning convolutional neural networks with three dimensional depth sensor imaging in scoliosis detection.
    Kokabu T; Kanai S; Kawakami N; Uno K; Kotani T; Suzuki T; Tachi H; Abe Y; Iwasaki N; Sudo H
    Spine J; 2021 Jun; 21(6):980-987. PubMed ID: 33540125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm.
    Yu L; Jing R; Liu F; Luo J; Li Y
    Mol Ther Nucleic Acids; 2020 Dec; 22():862-870. PubMed ID: 33230481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UniDL4BioPep: a universal deep learning architecture for binary classification in peptide bioactivity.
    Du Z; Ding X; Xu Y; Li Y
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37020337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ACPNet: A Deep Learning Network to Identify Anticancer Peptides by Hybrid Sequence Information.
    Sun M; Yang S; Hu X; Zhou Y
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anticancer peptides prediction with deep representation learning features.
    Lv Z; Cui F; Zou Q; Zhang L; Xu L
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33529337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A convolutional neural network algorithm for automatic segmentation of head and neck organs at risk using deep lifelong learning.
    Chan JW; Kearney V; Haaf S; Wu S; Bogdanov M; Reddick M; Dixit N; Sudhyadhom A; Chen J; Yom SS; Solberg TD
    Med Phys; 2019 May; 46(5):2204-2213. PubMed ID: 30887523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying multi-functional bioactive peptide functions using multi-label deep learning.
    Tang W; Dai R; Yan W; Zhang W; Bin Y; Xia E; Xia J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34651655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.
    Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N
    Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AAPred-CNN: Accurate predictor based on deep convolution neural network for identification of anti-angiogenic peptides.
    Lin C; Wang L; Shi L
    Methods; 2022 Aug; 204():442-448. PubMed ID: 35031486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks.
    Karimi M; Wu D; Wang Z; Shen Y
    Bioinformatics; 2019 Sep; 35(18):3329-3338. PubMed ID: 30768156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lung cancer survival period prediction and understanding: Deep learning approaches.
    Doppalapudi S; Qiu RG; Badr Y
    Int J Med Inform; 2021 Apr; 148():104371. PubMed ID: 33461009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.