These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34328092)

  • 1. An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches.
    Talebi M; Talebi M; Farkhondeh T; Kopustinskiene DM; Simal-Gandara J; Bernatoniene J; Samarghandian S
    Biomed Pharmacother; 2021 Sep; 141():111906. PubMed ID: 34328092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comprehensive Review on Therapeutic Potential of Chrysin in Brain Related Disorders.
    Goyal A; Singh G; Verma A
    CNS Neurol Disord Drug Targets; 2023; 22(6):789-800. PubMed ID: 35657041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroprotective Potential of Chrysin: Mechanistic Insights and Therapeutic Potential for Neurological Disorders.
    Mishra A; Mishra PS; Bandopadhyay R; Khurana N; Angelopoulou E; Paudel YN; Piperi C
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroprotective effects of chrysin: From chemistry to medicine.
    Nabavi SF; Braidy N; Habtemariam S; Orhan IE; Daglia M; Manayi A; Gortzi O; Nabavi SM
    Neurochem Int; 2015 Nov; 90():224-31. PubMed ID: 26386393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of chrysin on the molecular mechanisms underlying diabetic complications.
    Farkhondeh T; Samarghandian S; Roshanravan B
    J Cell Physiol; 2019 Aug; 234(10):17144-17158. PubMed ID: 30916403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review on Potential Footprints of Ferulic Acid for Treatment of Neurological Disorders.
    Thapliyal S; Singh T; Handu S; Bisht M; Kumari P; Arya P; Srivastava P; Gandham R
    Neurochem Res; 2021 May; 46(5):1043-1057. PubMed ID: 33547615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chrysin restores MPTP induced neuroinflammation, oxidative stress and neurotrophic factors in an acute Parkinson's disease mouse model.
    Krishnamoorthy A; Sevanan M; Mani S; Balu M; Balaji S; P R
    Neurosci Lett; 2019 Sep; 709():134382. PubMed ID: 31325581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Potential Neuroprotective Role of Free and Encapsulated Quercetin Mediated by miRNA against Neurological Diseases.
    Benameur T; Soleti R; Porro C
    Nutrients; 2021 Apr; 13(4):. PubMed ID: 33923599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chrysin attenuates global cerebral ischemic reperfusion injury via suppression of oxidative stress, inflammation and apoptosis.
    El Khashab IH; Abdelsalam RM; Elbrairy AI; Attia AS
    Biomed Pharmacother; 2019 Apr; 112():108619. PubMed ID: 30797156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chrysin exerts neuroprotective effects against 3-Nitropropionic acid induced behavioral despair-Mitochondrial dysfunction and striatal apoptosis via upregulating Bcl-2 gene and downregulating Bax-Bad genes in male wistar rats.
    Thangarajan S; Ramachandran S; Krishnamurthy P
    Biomed Pharmacother; 2016 Dec; 84():514-525. PubMed ID: 27690136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chrysin protects against focal cerebral ischemia/reperfusion injury in mice through attenuation of oxidative stress and inflammation.
    Yao Y; Chen L; Xiao J; Wang C; Jiang W; Zhang R; Hao J
    Int J Mol Sci; 2014 Nov; 15(11):20913-26. PubMed ID: 25402649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives.
    Moghadam ER; Ang HL; Asnaf SE; Zabolian A; Saleki H; Yavari M; Esmaeili H; Zarrabi A; Ashrafizadeh M; Kumar AP
    Biomolecules; 2020 Sep; 10(10):. PubMed ID: 32992587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chrysin: Perspectives on Contemporary Status and Future Possibilities as Pro-Health Agent.
    Stompor-Gorący M; Bajek-Bil A; Machaczka M
    Nutrients; 2021 Jun; 13(6):. PubMed ID: 34198618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chrysin protects against behavioral, cognitive and neurochemical alterations in a 6-hydroxydopamine model of Parkinson's disease.
    Del Fabbro L; Rossito Goes A; Jesse CR; de Gomes MG; Cattelan Souza L; Lobo Ladd FV; Lobo Ladd AAB; Nunes Arantes RV; Reis Simionato A; Oliveira MS; Furian AF; Boeira SP
    Neurosci Lett; 2019 Jul; 706():158-163. PubMed ID: 31121284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Cardiovascular Protective Effects of Chrysin: A Narrative Review on Experimental Researches.
    Farkhondeh T; Samarghandian S; Bafandeh F
    Cardiovasc Hematol Agents Med Chem; 2019; 17(1):17-27. PubMed ID: 30648526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological, Neurochemical, and Behavioral Mechanisms Underlying the Anxiolytic- and Antidepressant-like Effects of Flavonoid Chrysin.
    Rodríguez-Landa JF; German-Ponciano LJ; Puga-Olguín A; Olmos-Vázquez OJ
    Molecules; 2022 May; 27(11):. PubMed ID: 35684488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroprotective potential of chrysin in Parkinson's disease: Molecular mechanisms and clinical implications.
    Angelopoulou E; Pyrgelis ES; Piperi C
    Neurochem Int; 2020 Jan; 132():104612. PubMed ID: 31785348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis.
    Mantawy EM; El-Bakly WM; Esmat A; Badr AM; El-Demerdash E
    Eur J Pharmacol; 2014 Apr; 728():107-18. PubMed ID: 24509133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytochemical-loaded mesoporous silica nanoparticles for nose-to-brain olfactory drug delivery.
    Lungare S; Hallam K; Badhan RK
    Int J Pharm; 2016 Nov; 513(1-2):280-293. PubMed ID: 27633279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chrysin ameliorates cerebral ischemia/reperfusion (I/R) injury in rats by regulating the PI3K/Akt/mTOR pathway.
    Li TF; Ma J; Han XW; Jia YX; Yuan HF; Shui SF; Guo D; Yan L
    Neurochem Int; 2019 Oct; 129():104496. PubMed ID: 31247243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.