BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34328150)

  • 41. CeO
    Dong W; Huang Y
    Mikrochim Acta; 2019 Dec; 187(1):11. PubMed ID: 31802246
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In situ formation of fluorescent polydopamine catalyzed by peroxidase-mimicking FeCo-LDH for pyrophosphate ion and pyrophosphatase activity detection.
    Xu X; Zou X; Wu S; Wang L; Niu X; Li X; Pan J; Zhao H; Lan M
    Anal Chim Acta; 2019 Apr; 1053():89-97. PubMed ID: 30712573
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Colorimetric determination of As(III) based on 3-mercaptopropionic acid assisted active site and interlayer channel dual-masking of Fe-Co-layered double hydroxides with oxidase-like activity.
    Xu X; Zou X; Wu S; Wang L; Pan J; Xu M; Shan W; Li X; Niu X
    Mikrochim Acta; 2019 Nov; 186(12):815. PubMed ID: 31745663
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ce-MOF with Intrinsic Haloperoxidase-Like Activity for Ratiometric Colorimetric Detection of Hydrogen Peroxide.
    Cheng Y; Liang L; Ye F; Zhao S
    Biosensors (Basel); 2021 Jun; 11(7):. PubMed ID: 34201518
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A nanoporous palladium(II) bridged coordination polymer acting as a peroxidase mimic in a method for visual detection of glucose in tear and saliva.
    Vinita ; Nirala NR; Tiwari M; Prakash R
    Mikrochim Acta; 2018 Apr; 185(4):245. PubMed ID: 29610983
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lanthanide coordination polymers@CuO nanoparticles: Enhanced self-cascade nanoenzyme activity and ratiometric fluorescence assay of glutathione.
    Wu X; Ruan C; Zhou S; Zou L; Wang R; Li G
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep; 317():124410. PubMed ID: 38718745
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Colorimetric and electrochemical (dual) thrombin assay based on the use of a platinum nanoparticle modified metal-organic framework (type Fe-MIL-88) acting as a peroxidase mimic.
    Cheng T; Li X; Huang P; Wang H; Wang M; Yang W
    Mikrochim Acta; 2019 Jan; 186(2):94. PubMed ID: 30631938
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Colorimetric detection of iron ions (III) based on the highly sensitive plasmonic response of the N-acetyl-L-cysteine-stabilized silver nanoparticles.
    Gao X; Lu Y; He S; Li X; Chen W
    Anal Chim Acta; 2015 Jun; 879():118-25. PubMed ID: 26002486
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Perylene diimide-functionalized CeO
    Lian J; Liu P; Jin C; Shi Z; Luo X; Liu Q
    Mikrochim Acta; 2019 May; 186(6):332. PubMed ID: 31062174
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Highly sensitive colorimetric detection of lead using maleic acid functionalized gold nanoparticles.
    Ratnarathorn N; Chailapakul O; Dungchai W
    Talanta; 2015 Jan; 132():613-8. PubMed ID: 25476352
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cerium(III)-doped MoS
    Zhang X; Wang C; Gao Y
    Mikrochim Acta; 2020 Jan; 187(2):111. PubMed ID: 31919689
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Facile and Reversible Formation of Iron(III)-Oxo-Cerium(IV) Adducts from Nonheme Oxoiron(IV) Complexes and Cerium(III).
    Draksharapu A; Rasheed W; Klein JEMN; Que L
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):9091-9095. PubMed ID: 28598024
    [TBL] [Abstract][Full Text] [Related]  

  • 53. FeCo nanoparticles-embedded carbon nanofibers as robust peroxidase mimics for sensitive colorimetric detection of l-cysteine.
    Yang Z; Zhu Y; Nie G; Li M; Wang C; Lu X
    Dalton Trans; 2017 Jul; 46(28):8942-8949. PubMed ID: 28644494
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of a mixed valence state Ce-MOF as an oxidase mimetic for the colorimetric detection of biothiols.
    Xiong Y; Chen S; Ye F; Su L; Zhang C; Shen S; Zhao S
    Chem Commun (Camb); 2015 Mar; 51(22):4635-8. PubMed ID: 25690559
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MnO
    Liu J; Meng L; Fei Z; Dyson PJ; Jing X; Liu X
    Biosens Bioelectron; 2017 Apr; 90():69-74. PubMed ID: 27886603
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DNA-scaffold copper nanoclusters integrated into a cerium(III)-triggered Fenton-like reaction for the fluorometric and colorimetric enzymatic determination of glucose.
    Li H; Lu Y; Pang J; Sun J; Yang F; Wang Z; Liu Y
    Mikrochim Acta; 2019 Dec; 186(12):862. PubMed ID: 31792614
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mixed-Valence Ce-BPyDC Metal-Organic Framework with Dual Enzyme-like Activities for Colorimetric Biosensing.
    Luo L; Huang L; Liu X; Zhang W; Yao X; Dou L; Zhang X; Nian Y; Sun J; Wang J
    Inorg Chem; 2019 Sep; 58(17):11382-11388. PubMed ID: 31402664
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Self-templated fabrication of FeMnO
    Chi M; Chen S; Zhong M; Wang C; Lu X
    Chem Commun (Camb); 2018 Jun; 54(46):5827-5830. PubMed ID: 29670955
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A highly selective and sensitive probe for colorimetric and fluorogenic detection of Cd2+ in aqueous media.
    Goswami S; Aich K; Das S; Das AK; Manna A; Halder S
    Analyst; 2013 Mar; 138(6):1903-7. PubMed ID: 23392200
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using thermally regenerable cerium oxide nanoparticles in biocomputing to perform label-free, resettable, and colorimetric logic operations.
    Lin Y; Xu C; Ren J; Qu X
    Angew Chem Int Ed Engl; 2012 Dec; 51(50):12579-83. PubMed ID: 23136077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.