These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34328169)

  • 1. Duplicated antagonistic EPF peptides optimize grass stomatal initiation.
    Jangra R; Brunetti SC; Wang X; Kaushik P; Gulick PJ; Foroud NA; Wang S; Lee JS
    Development; 2021 Aug; 148(16):. PubMed ID: 34328169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective range of non-cell autonomous activator and inhibitor peptides specifying plant stomatal patterning.
    Zeng SM; Lo EKW; Hazelton BJ; Morales MF; Torii KU
    Development; 2020 Sep; 147(17):. PubMed ID: 32816968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stomatal density is controlled by a mesophyll-derived signaling molecule.
    Kondo T; Kajita R; Miyazaki A; Hokoyama M; Nakamura-Miura T; Mizuno S; Masuda Y; Irie K; Tanaka Y; Takada S; Kakimoto T; Sakagami Y
    Plant Cell Physiol; 2010 Jan; 51(1):1-8. PubMed ID: 20007289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Take a deep breath: peptide signalling in stomatal patterning and differentiation.
    Richardson LG; Torii KU
    J Exp Bot; 2013 Dec; 64(17):5243-51. PubMed ID: 23997204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mix-and-match: ligand-receptor pairs in stomatal development and beyond.
    Torii KU
    Trends Plant Sci; 2012 Dec; 17(12):711-9. PubMed ID: 22819466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive binding of antagonistic peptides fine-tunes stomatal patterning.
    Lee JS; Hnilova M; Maes M; Lin YC; Putarjunan A; Han SK; Avila J; Torii KU
    Nature; 2015 Jun; 522(7557):439-43. PubMed ID: 26083750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient.
    Doheny-Adams T; Hunt L; Franks PJ; Beerling DJ; Gray JE
    Philos Trans R Soc Lond B Biol Sci; 2012 Feb; 367(1588):547-55. PubMed ID: 22232766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stomatal development: focusing on the grasses.
    Hepworth C; Caine RS; Harrison EL; Sloan J; Gray JE
    Curr Opin Plant Biol; 2018 Feb; 41():1-7. PubMed ID: 28826033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis homeodomain-leucine zipper IV proteins promote stomatal development and ectopically induce stomata beyond the epidermis.
    Peterson KM; Shyu C; Burr CA; Horst RJ; Kanaoka MM; Omae M; Sato Y; Torii KU
    Development; 2013 May; 140(9):1924-35. PubMed ID: 23515473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll.
    Zhang JY; He SB; Li L; Yang HQ
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E3015-23. PubMed ID: 25002510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced stomatal density in bread wheat leads to increased water-use efficiency.
    Dunn J; Hunt L; Afsharinafar M; Meselmani MA; Mitchell A; Howells R; Wallington E; Fleming AJ; Gray JE
    J Exp Bot; 2019 Sep; 70(18):4737-4748. PubMed ID: 31172183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis.
    Lee JH; Jung JH; Park CM
    Plant Cell; 2017 Nov; 29(11):2817-2830. PubMed ID: 29070509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential Function of Arabidopsis SERK Family Receptor-like Kinases in Stomatal Patterning.
    Meng X; Chen X; Mang H; Liu C; Yu X; Gao X; Torii KU; He P; Shan L
    Curr Biol; 2015 Sep; 25(18):2361-72. PubMed ID: 26320950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity.
    Raissig MT; Abrash E; Bettadapur A; Vogel JP; Bergmann DC
    Proc Natl Acad Sci U S A; 2016 Jul; 113(29):8326-31. PubMed ID: 27382177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual role of BdMUTE during stomatal development in the model grass Brachypodium distachyon.
    Spiegelhalder RP; Berg LS; Nunes TDG; Dörr M; Jesenofsky B; Lindner H; Raissig MT
    Development; 2024 Oct; 151(20):. PubMed ID: 39166983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel role for STOMATAL CARPENTER 1 in stomata patterning.
    Castorina G; Fox S; Tonelli C; Galbiati M; Conti L
    BMC Plant Biol; 2016 Aug; 16(1):172. PubMed ID: 27484174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling.
    Qi X; Han SK; Dang JH; Garrick JM; Ito M; Hofstetter AK; Torii KU
    Elife; 2017 Mar; 6():. PubMed ID: 28266915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary relationship and structural characterization of the EPF/EPFL gene family.
    Takata N; Yokota K; Ohki S; Mori M; Taniguchi T; Kurita M
    PLoS One; 2013; 8(6):e65183. PubMed ID: 23755192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development.
    Hunt L; Gray JE
    Curr Biol; 2009 May; 19(10):864-9. PubMed ID: 19398336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homologous genes of epidermal patterning factor regulate stomatal development in rice.
    Lu J; He J; Zhou X; Zhong J; Li J; Liang YK
    J Plant Physiol; 2019; 234-235():18-27. PubMed ID: 30660943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.