These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34328220)

  • 1. A novel method for linking between a 3D printer and printed objects using toolmark comparison techniques.
    Aronson A; Elyashiv A; Cohen Y; Wiesner S
    J Forensic Sci; 2021 Nov; 66(6):2405-2412. PubMed ID: 34328220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential impacts of 3D modeling and 3D printing in firearm toolmark examinations.
    Li SY; Turner J; Golightly S; Zelbst P; Yu J
    J Forensic Sci; 2021 Nov; 66(6):2201-2207. PubMed ID: 34195997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An exploratory study of topographical signatures within 3D fused deposition modelling using Polylactic Acid (PLA) filament.
    Pavlovich S; Garrison K
    Forensic Sci Int; 2023 Aug; 349():111740. PubMed ID: 37271058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling.
    Fafenrot S; Grimmelsmann N; Wortmann M; Ehrmann A
    Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 29048347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Temperature Polylactic Acid Proves Reliable and Safe for Manufacturing 3D-Printed Patient-Specific Instruments in Pediatric Orthopedics-Results from over 80 Personalized Devices Employed in 47 Surgeries.
    Menozzi GC; Depaoli A; Ramella M; Alessandri G; Frizziero L; De Rosa A; Soncini F; Sassoli V; Rocca G; Trisolino G
    Polymers (Basel); 2024 Apr; 16(9):. PubMed ID: 38732685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose Nanofibrils Filled Poly(Lactic Acid) Biocomposite Filament for FDM 3D Printing.
    Wang Q; Ji C; Sun L; Sun J; Liu J
    Molecules; 2020 May; 25(10):. PubMed ID: 32429191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printing with a 3D printed digital material filament for programming functional gradients.
    Ahn SJ; Lee H; Cho KJ
    Nat Commun; 2024 May; 15(1):3605. PubMed ID: 38714684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology and Mechanical Properties of 3D Printed Wood Fiber/Polylactic Acid Composite Parts Using Fused Deposition Modeling (FDM): The Effects of Printing Speed.
    Yang TC; Yeh CH
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32545359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Electrical Heating Performance of CFDM 3D-Printed Graphene/Polylactic Acid (PLA) Horseshoe Pattern with Different 3D Printing Directions.
    Kim H; Lee S
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33322075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing Technology in Design of Pharmaceutical Products.
    Ameeduzzafar ; Alruwaili NK; Rizwanullah M; Abbas Bukhari SN; Amir M; Ahmed MM; Fazil M
    Curr Pharm Des; 2018; 24(42):5009-5018. PubMed ID: 30652636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strength of PLA Components Fabricated with Fused Deposition Technology Using a Desktop 3D Printer as a Function of Geometrical Parameters of the Process.
    Kuznetsov VE; Solonin AN; Urzhumtsev OD; Schilling R; Tavitov AG
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Application of Wood Flour-Filled Polylactic Acid Composite Filament for 3D Printing.
    Tao Y; Wang H; Li Z; Li P; Shi SQ
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.
    Goyanes A; Det-Amornrat U; Wang J; Basit AW; Gaisford S
    J Control Release; 2016 Jul; 234():41-8. PubMed ID: 27189134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental fatigue dataset for additive-manufactured 3D-printed Polylactic acid biomaterials under fully-reversed rotating-bending bending loadings.
    Azadi M; Dadashi A
    Data Brief; 2022 Apr; 41():107846. PubMed ID: 35128005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inherent Impurities in Graphene/Polylactic Acid Filament Strongly Influence on the Capacitive Performance of 3D-Printed Electrode.
    Ghosh K; Ng S; Iffelsberger C; Pumera M
    Chemistry; 2020 Dec; 26(67):15746-15753. PubMed ID: 33166037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of the fused deposition modeling-based fabrication process for polylactic acid microneedles.
    Wu L; Park J; Kamaki Y; Kim B
    Microsyst Nanoeng; 2021; 7():58. PubMed ID: 34567770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relevance of current forensic firearms examination techniques when applied to 3D printed firearms.
    Wenzinger ZE; Wetzel S; Bernarding B; Viator J; Kohlhepp B; Marshall P
    J Forensic Sci; 2024 Mar; 69(2):659-668. PubMed ID: 38282520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Parameter Optimization of 3D Printing Condition for Enhanced Quality and Strength.
    Jackson B; Fouladi K; Eslami B
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines.
    Elbadawi M; Muñiz Castro B; Gavins FKH; Ong JJ; Gaisford S; Pérez G; Basit AW; Cabalar P; Goyanes A
    Int J Pharm; 2020 Nov; 590():119837. PubMed ID: 32961295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Porosity and Crystallinity on 3D Printed PLA Properties.
    Liao Y; Liu C; Coppola B; Barra G; Di Maio L; Incarnato L; Lafdi K
    Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31547357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.