These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
411 related articles for article (PubMed ID: 34328278)
1. Chlorides, other Halides, and Pseudo-Halides as Additives for the Fabrication of Efficient and Stable Perovskite Solar Cells. Cheng F; Zhang J; Pauporté T ChemSusChem; 2021 Sep; 14(18):3665-3692. PubMed ID: 34328278 [TBL] [Abstract][Full Text] [Related]
2. Interfacial modification towards highly efficient and stable perovskite solar cells. Wang Y; Zhang Z; Tao M; Lan Y; Li M; Tian Y; Song Y Nanoscale; 2020 Sep; 12(36):18563-18575. PubMed ID: 32970092 [TBL] [Abstract][Full Text] [Related]
3. Defect Passivation Scheme toward High-Performance Halide Perovskite Solar Cells. Du B; He K; Zhao X; Li B Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177158 [TBL] [Abstract][Full Text] [Related]
4. Rational Strategies for Efficient Perovskite Solar Cells. Seo J; Noh JH; Seok SI Acc Chem Res; 2016 Mar; 49(3):562-72. PubMed ID: 26950188 [TBL] [Abstract][Full Text] [Related]
5. Solvent Engineering as a Vehicle for High Quality Thin Films of Perovskites and Their Device Fabrication. Rezaee E; Zhang W; Silva SRP Small; 2021 Jun; 17(25):e2008145. PubMed ID: 33988287 [TBL] [Abstract][Full Text] [Related]
6. Efficient and Stable Perovskite Solar Cells with a High Open-Circuit Voltage Over 1.2 V Achieved by a Dual-Side Passivation Layer. Kim JH; Kim YR; Kim J; Oh CM; Hwang IW; Kim J; Zeiske S; Ki T; Kwon S; Kim H; Armin A; Suh H; Lee K Adv Mater; 2022 Oct; 34(41):e2205268. PubMed ID: 36030364 [TBL] [Abstract][Full Text] [Related]
7. Goethite Quantum Dots as Multifunctional Additives for Highly Efficient and Stable Perovskite Solar Cells. Chen H; Luo Q; Liu T; Ren J; Li S; Tai M; Lin H; He H; Wang J; Wang N Small; 2019 Nov; 15(47):e1904372. PubMed ID: 31609079 [TBL] [Abstract][Full Text] [Related]
8. Synergistic Passivation With Phenylpropylammonium Bromide for Efficient Inverted Perovskite Solar Cells. Zhu A; Gu H; Li W; Liao J; Xia J; Liang C; Sun G; Sha Z; Xing G Small Methods; 2024 Feb; 8(2):e2300428. PubMed ID: 37328447 [TBL] [Abstract][Full Text] [Related]
9. Improving the Performance of Perovskite Solar Cells with Insulating Additive-Modified Hole Transport Layers. Zhang G; Zheng Y; Shi Y; Ma X; Sun M; Li T; Yang B; Shao Y ACS Appl Mater Interfaces; 2022 Mar; 14(9):11500-11508. PubMed ID: 35191664 [TBL] [Abstract][Full Text] [Related]
10. Effects of Chemical Valences of Sulfur on the Performance of CsFAMA Perovskite Solar Cells. Xing Z; Ou B; Sun H; Di H; Jin Y; Xiong Y; Liao F; Zhao Y ACS Omega; 2023 Jun; 8(23):20912-20919. PubMed ID: 37332778 [TBL] [Abstract][Full Text] [Related]
11. Interfacial Modification in Organic and Perovskite Solar Cells. Bi S; Leng X; Li Y; Zheng Z; Zhang X; Zhang Y; Zhou H Adv Mater; 2019 Nov; 31(45):e1805708. PubMed ID: 30600552 [TBL] [Abstract][Full Text] [Related]
12. Review of Interface Passivation of Perovskite Layer. Wu Y; Wang D; Liu J; Cai H Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803757 [TBL] [Abstract][Full Text] [Related]
13. Highly Stable Inorganic Lead Halide Perovskite toward Efficient Photovoltaics. Chen Y; Liu X; Wang T; Zhao Y Acc Chem Res; 2021 Sep; 54(17):3452-3461. PubMed ID: 34428021 [TBL] [Abstract][Full Text] [Related]
14. Bridging Effects of Sulfur Anions at Titanium Oxide and Perovskite Interfaces on Interfacial Defect Passivation and Performance Enhancement of Perovskite Solar Cells. Liu Y; Sun H; Liao F; Li G; Zhao C; Cui C; Mei J; Zhao Y ACS Omega; 2021 Dec; 6(50):34485-34493. PubMed ID: 34963933 [TBL] [Abstract][Full Text] [Related]
15. Efficient Semitransparent Solar Cells Enabled by Introducing Uddin Z; Ran J; Zheng D; Xiao Z; Yang B ACS Appl Mater Interfaces; 2024 Sep; 16(37):49428-49433. PubMed ID: 39231263 [TBL] [Abstract][Full Text] [Related]
16. Stabilizing Organic-Inorganic Lead Halide Perovskite Solar Cells With Efficiency Beyond 20. Lin C Front Chem; 2020; 8():592. PubMed ID: 32850630 [TBL] [Abstract][Full Text] [Related]
17. Creating a Dual-Functional 2D Perovskite Layer at the Interface to Enhance the Performance of Flexible Perovskite Solar Cells. Long C; Huang K; Chang J; Zuo C; Gao Y; Luo X; Liu B; Xie H; Chen Z; He J; Huang H; Gao Y; Ding L; Yang J Small; 2021 Aug; 17(32):e2102368. PubMed ID: 34174144 [TBL] [Abstract][Full Text] [Related]
18. Strategies for the preparation of high-performance inorganic mixed-halide perovskite solar cells. Liu X; Li J; Cui X; Wang X; Yang D RSC Adv; 2022 Nov; 12(51):32925-32948. PubMed ID: 36425177 [TBL] [Abstract][Full Text] [Related]
19. Impact of Interfacial Layers in Perovskite Solar Cells. Cho AN; Park NG ChemSusChem; 2017 Oct; 10(19):3687-3704. PubMed ID: 28736950 [TBL] [Abstract][Full Text] [Related]
20. Durable Defect Passivation of the Grain Surface in Perovskite Solar Cells with π-Conjugated Sulfamic Acid Additives. Cao K; Huang Y; Ge M; Huang F; Shi W; Wu Y; Cheng Y; Qian J; Liu L; Chen S ACS Appl Mater Interfaces; 2021 Jun; 13(22):26013-26022. PubMed ID: 34048215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]