These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34328336)

  • 1. Cyclobis[2,5-(thiophenedimethane)-4,4'-(triphenylamine)] versus Its
    Lopez-Garcia F; Dong S; Han Y; Cheng Lee JJ; Ng PW; Chi C
    Org Lett; 2021 Aug; 23(16):6382-6386. PubMed ID: 34328336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclobis(7,8-(para-quinodimethane)-4,4'-triphenylamine) and Its Cationic Species Showing Annulene-Like Global (Anti)Aromaticity.
    Dong S; Gopalakrishna TY; Han Y; Chi C
    Angew Chem Int Ed Engl; 2019 Aug; 58(34):11742-11746. PubMed ID: 31225671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile Synthesis and Global Aromaticity of Aza-Superbenzene and Aza-Supernaphthalene at Different Oxidation States.
    Ma Y; Han Y; Hou X; Wu S; Chi C
    Angew Chem Int Ed Engl; 2024 Jul; ():e202407990. PubMed ID: 38958027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global Aromaticity in Macrocyclic Polyradicaloids: Hückel's Rule or Baird's Rule?
    Liu C; Ni Y; Lu X; Li G; Wu J
    Acc Chem Res; 2019 Aug; 52(8):2309-2321. PubMed ID: 31314487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aromaticity in Fully π-Conjugated Multicyclic Macrocycles.
    Ren L; Han Y; Hou X; Ni Y; Zou Y; Jiao T; Wu J
    J Am Chem Soc; 2023 Jun; 145(22):12398-12406. PubMed ID: 37233728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aromaticity in Fully π-Conjugated Open-Cage Molecules.
    Wu S; Ni Y; Han Y; Xin S; Hou X; Zhu J; Li Z; Wu J
    J Am Chem Soc; 2022 Dec; 144(50):23158-23167. PubMed ID: 36475662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porphyrin/Quinoidal-Bithiophene-Based Macrocycles and Their Dications: Template-Free Synthesis and Global Aromaticity.
    Ren L; Gopalakrishna TY; Park IH; Han Y; Wu J
    Angew Chem Int Ed Engl; 2020 Feb; 59(6):2230-2234. PubMed ID: 31692181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible redox reaction between antiaromatic and aromatic states of 32π-expanded isophlorins.
    Gopalakrishna TY; Anand VG
    Angew Chem Int Ed Engl; 2014 Jun; 53(26):6678-82. PubMed ID: 24828097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiophene-Fused 1,4-Diazapentalene: A Stable C=N-Containing π-Conjugated System with Restored Antiaromaticity.
    Usuba J; Fukazawa A
    Chemistry; 2021 Nov; 27(65):16127-16134. PubMed ID: 34605567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiaromaticity-Aromaticity Interplay in Fused Benzenoid Systems Using Molecular Electrostatic Potential Topology.
    Anjalikrishna PK; Gadre SR; Suresh CH
    J Phys Chem A; 2021 Jul; 125(27):5999-6012. PubMed ID: 34210140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Open-Shell Singlet Diradicaloid to Closed-Shell Global Antiaromatic Macrocycles.
    Li G; Gopalakrishna TY; Phan H; Herng TS; Ding J; Wu J
    Angew Chem Int Ed Engl; 2018 Jun; 57(24):7166-7170. PubMed ID: 29673072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin of global and macrocyclic aromaticity in porphyrinoids.
    Nakagami Y; Sekine R; Aihara J
    Org Biomol Chem; 2012 Jul; 10(27):5219-29. PubMed ID: 22692628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explorations of the Indenofluorenes and Expanded Quinoidal Analogues.
    Frederickson CK; Rose BD; Haley MM
    Acc Chem Res; 2017 Apr; 50(4):977-987. PubMed ID: 28207235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meso-Carbon Atom Nucleophilic Attack Susceptibility in the Sterically Strained Antiaromatic Bis-BODIPY Macrocycle and Extended Electron-Deficient BODIPY Precursor.
    Zatsikha YV; Schrage BR; Blesener TS; Harrison LA; Ziegler CJ; Nemykin VN
    Chemistry; 2022 Sep; 28(54):e202201261. PubMed ID: 35816004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel aromatic and antiaromatic systems.
    Breslow R
    Chem Rec; 2014 Dec; 14(6):1174-82. PubMed ID: 25335917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of aromaticity in tetraoxa[8]circulenes.
    Radenković S; Gutman I; Bultinck P
    J Phys Chem A; 2012 Sep; 116(37):9421-30. PubMed ID: 22937838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dianion and dication of tetrabenzo[5.7]fulvalene. Greater antiaromaticity than aromaticity in comparable systems.
    Piekarski AM; Mills NS; Yousef A
    J Am Chem Soc; 2008 Nov; 130(44):14883-90. PubMed ID: 18850706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of Antiaromatic Character via Additional Benzoannulation into Dibenzo[ a, f]pentalene: Syntheses and Properties of Benzo[ a]naphtho[2,1- f]pentalene and Dinaphtho[2,1- a, f]pentalene.
    Konishi A; Okada Y; Kishi R; Nakano M; Yasuda M
    J Am Chem Soc; 2019 Jan; 141(1):560-571. PubMed ID: 30525568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BODIPY-Based Antiaromatic Macrocycles: Facile Synthesis by Knoevenagel Condensation and Unusual Aggregation-Enhanced Two-Photon Absorption Properties.
    Chua MH; Kim T; Lim ZL; Gopalakrishna TY; Ni Y; Xu J; Kim D; Wu J
    Chemistry; 2018 Feb; 24(9):2232-2241. PubMed ID: 29218746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aromaticity/Antiaromaticity Effect on Activity of Transition Metal Macrocyclic Complexes towards Electrocatalytic Oxygen Reduction.
    Ni Y; Lu Y; Zhang K; Chen J
    ChemSusChem; 2021 Apr; 14(8):1835-1839. PubMed ID: 33605052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.