These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34328344)

  • 1. Getting it right: preventing drift in baseline cardiovascular phenotype when using Sprague-Dawley rats.
    Banek CT; Bradshaw JL; Coats LE; Alexander BT; Goulopoulou S
    Am J Physiol Heart Circ Physiol; 2021 Sep; 321(3):H475-H478. PubMed ID: 34328344
    [No Abstract]   [Full Text] [Related]  

  • 2. Echocardiographic characterization of the cardiovascular phenotype in rodent models.
    Hoit BD
    Toxicol Pathol; 2006; 34(1):105-10. PubMed ID: 16507551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meeting report: NHLBI symposium on phenotyping: mouse cardiovascular function and development.
    Lo C; Nabel E; Balaban R
    Physiol Genomics; 2003 May; 13(3):185-6. PubMed ID: 12746462
    [No Abstract]   [Full Text] [Related]  

  • 4. Genotype and cardiovascular phenotype: lessons from genetically manipulated animals and diseased humans.
    Sharp MG; Kantachuvesiri S; Mullins JJ
    Curr Opin Nephrol Hypertens; 1997 Jan; 6(1):51-7. PubMed ID: 9051354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neonatal oxygen exposure in rats leads to cardiovascular and renal alterations in adulthood.
    Yzydorczyk C; Comte B; Cambonie G; Lavoie JC; Germain N; Ting Shun Y; Wolff J; Deschepper C; Touyz RM; Lelièvre-Pegorier M; Nuyt AM
    Hypertension; 2008 Nov; 52(5):889-95. PubMed ID: 18852387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiology in perspective: addressing cardiovascular health and disease.
    Sieck G
    Physiology (Bethesda); 2013 Jul; 28(4):214-5. PubMed ID: 23817795
    [No Abstract]   [Full Text] [Related]  

  • 7. Transgenic animal models: new avenues in cardiovascular physiology.
    Franz WM; Mueller OJ; Hartong R; Frey N; Katus HA
    J Mol Med (Berl); 1997 Feb; 75(2):115-29. PubMed ID: 9083929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is a mouse like any other mouse?
    Hintze TH; Shesely EG
    J Mol Cell Cardiol; 2002 Oct; 34(10):1283-6. PubMed ID: 12392985
    [No Abstract]   [Full Text] [Related]  

  • 9. Rat chromosome 19 transfer from SHR ameliorates hypertension, salt-sensitivity, cardiovascular and renal organ damage in salt-sensitive Dahl rats.
    Wendt N; Schulz A; Siegel AK; Weiss J; Wehland M; Sietmann A; Kossmehl P; Grimm D; Stoll M; Kreutz R
    J Hypertens; 2007 Jan; 25(1):95-102. PubMed ID: 17143179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rat models of cardiometabolic diseases: baseline clinical chemistries, and rationale for their use in examining air pollution health effects.
    Kodavanti UP; Russell JC; Costa DL
    Inhal Toxicol; 2015; 27 Suppl 1():2-13. PubMed ID: 26667327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Importance of Biological Sex and Estrogen in Rodent Models of Cardiovascular Health and Disease.
    Blenck CL; Harvey PA; Reckelhoff JF; Leinwand LA
    Circ Res; 2016 Apr; 118(8):1294-312. PubMed ID: 27081111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of chronic continual- and intermittent hypoxia-induced systemic inflammation on the cardiovascular system in rats.
    Xu XM; Yao D; Cai XD; Ding C; Lin QD; Wang LX; Huang XY
    Sleep Breath; 2015 May; 19(2):677-84. PubMed ID: 25395264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease.
    Allison BJ; Kaandorp JJ; Kane AD; Camm EJ; Lusby C; Cross CM; Nevin-Dolan R; Thakor AS; Derks JB; Tarry-Adkins JL; Ozanne SE; Giussani DA
    FASEB J; 2016 May; 30(5):1968-75. PubMed ID: 26932929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system.
    Akki A; Gupta A; Weiss RG
    Am J Physiol Heart Circ Physiol; 2013 Mar; 304(5):H633-48. PubMed ID: 23292717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental programming of cardiovascular disease following intrauterine growth restriction: findings utilising a rat model of maternal protein restriction.
    Zohdi V; Lim K; Pearson JT; Black MJ
    Nutrients; 2014 Dec; 7(1):119-52. PubMed ID: 25551250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does chronic pain alter the normal interaction between cardiovascular and pain regulatory systems? Pain modulation in the hypertensive-monoarthritic rat.
    Pinho D; Morato M; Couto MR; Marques-Lopes J; Tavares I; Albino-Teixeira A
    J Pain; 2011 Feb; 12(2):194-204. PubMed ID: 20736136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression profiles of CLC chloride channels in animal models with different cardiovascular diseases.
    Scherer CR; Linz W; Busch AE; Steinmeyer K
    Cell Physiol Biochem; 2001; 11(6):321-30. PubMed ID: 11832657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long non-coding RNAs, a new important regulator of cardiovascular physiology and pathology.
    Ma Y; Ma W; Huang L; Feng D; Cai B
    Int J Cardiol; 2015 Jun; 188():105-10. PubMed ID: 25917923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide association studies and contribution to cardiovascular physiology.
    Munroe PB; Tinker A
    Physiol Genomics; 2015 Sep; 47(9):365-75. PubMed ID: 26106147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelial NOS expression within the ventrolateral medulla can affect cardiovascular function during static exercise in stroked rats.
    Ally A; Maher TJ
    Brain Res; 2008 Feb; 1196():33-40. PubMed ID: 18234158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.