These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34328595)

  • 21. Body size and the small branch niche: using marsupial ontogeny to model primate locomotor evolution.
    Shapiro LJ; Young JW; VandeBerg JL
    J Hum Evol; 2014 Mar; 68():14-31. PubMed ID: 24508352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of surface diameter and incline on the hindlimb kinematics of an arboreal lizard (Anolis sagrei).
    Spezzano LC; Jayne BC
    J Exp Biol; 2004 May; 207(Pt 12):2115-31. PubMed ID: 15143145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brief communication: Dynamic plantar pressure distribution during locomotion in Japanese macaques (Macaca fuscata).
    Hirasaki E; Higurashi Y; Kumakura H
    Am J Phys Anthropol; 2010 May; 142(1):149-56. PubMed ID: 20027608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The jump as a fast mode of locomotion in arboreal and terrestrial biotopes.
    Günther MM; Ishida H; Kumakura H; Nakano Y
    Z Morphol Anthropol; 1991; 78(3):341-72. PubMed ID: 1887664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Positional behavior of long-tailed macaques (Macaca fascicularis) in northern Sumatra.
    Cant JG
    Am J Phys Anthropol; 1988 May; 76(1):29-37. PubMed ID: 3407756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arboreal Locomotion in Eurasian Harvest Mice Micromys Minutus (Rodentia: Muridae): The Gaits of Small Mammals.
    Karantanis NE; Rychlik L; Herrel A; Youlatos D
    J Exp Zool A Ecol Integr Physiol; 2017 Jan; 327(1):38-52. PubMed ID: 28332310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gait mechanics of a blind echolocating rodent: Implications for the locomotion of small arboreal mammals and proto-bats.
    Granatosky MC; Amanat S; Panyutina AA; Youlatos D
    J Exp Zool A Ecol Integr Physiol; 2021 Apr; 335(4):436-453. PubMed ID: 33830677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gait mechanics of lemurid primates on terrestrial and arboreal substrates.
    Franz TM; Demes B; Carlson KJ
    J Hum Evol; 2005 Feb; 48(2):199-217. PubMed ID: 15701531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mediolateral reaction forces and forelimb anatomy in quadrupedal primates: implications for interpreting locomotor behavior in fossil primates.
    Schmitt D
    J Hum Evol; 2003 Jan; 44(1):47-58. PubMed ID: 12604303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gaits of Japanese macaques (Macaca fuscata) on a horizontal ladder and arboreal stability.
    Higurashi Y; Hirasaki E; Kumakura H
    Am J Phys Anthropol; 2009 Apr; 138(4):448-57. PubMed ID: 19003919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mechanical origins of arm-swinging.
    Granatosky MC; Schmitt D
    J Hum Evol; 2019 May; 130():61-71. PubMed ID: 31010544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Not all fine-branch locomotion is equal: Grasping morphology determines locomotor performance on narrow supports.
    Young JW; Chadwell BA
    J Hum Evol; 2020 May; 142():102767. PubMed ID: 32240883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inefficient use of inverted pendulum mechanism during quadrupedal walking in the Japanese macaque.
    Ogihara N; Makishima H; Hirasaki E; Nakatsukasa M
    Primates; 2012 Jan; 53(1):41-8. PubMed ID: 21874286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative Gross Anatomy of the Forelimb Arteries of the Japanese Monkey (
    Aversi-Ferreira TA; Freitas-Ferreira E; Aversi-Ferreira RAGMF; Cordeiro-de-Oliveira K; Lopes-de-Freitas G; Trevisan K; Cavalcante GF; Vasconcelos-da-Silva E; Figueredo-Silva S; Pereira RC; Couto DS; Rodrigues RC; de Abreu T
    Biomed Res Int; 2020; 2020():8635917. PubMed ID: 32724814
    [No Abstract]   [Full Text] [Related]  

  • 35. The effect of substrate diameter and incline on locomotion in an arboreal frog.
    Herrel A; Perrenoud M; Decamps T; Abdala V; Manzano A; Pouydebat E
    J Exp Biol; 2013 Oct; 216(Pt 19):3599-605. PubMed ID: 24006344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acquisition of operant-trained bipedal locomotion in juvenile Japanese monkeys (Macaca fuscata): a longitudinal study.
    Tachibana A; Mori F; Boliek CA; Nakajima K; Takasu C; Mori S
    Motor Control; 2003 Oct; 7(4):388-410. PubMed ID: 14999136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Center of mass mechanics during locomotion in the arboreal squirrel monkey (Saimiri sciureus) as a function of speed and substrate.
    Miller CE; Granatosky MC; Schmitt D
    J Exp Biol; 2024 Oct; ():. PubMed ID: 39422179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chimpanzee ankle and foot joint kinematics: Arboreal versus terrestrial locomotion.
    Holowka NB; O'Neill MC; Thompson NE; Demes B
    Am J Phys Anthropol; 2017 Sep; 164(1):131-147. PubMed ID: 28594068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Balancing on a Limb: Effects of Gravidity on Locomotion in Arboreal, Limbed Vertebrates.
    Smith SK; Hilliard Young VK
    Integr Comp Biol; 2021 Sep; 61(2):573-578. PubMed ID: 33885749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Angular momentum and arboreal stability in common marmosets (Callithrix jacchus).
    Chadwell BA; Young JW
    Am J Phys Anthropol; 2015 Apr; 156(4):565-76. PubMed ID: 25523444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.