These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34328595)

  • 61. Effects of support diameter and compliance on common marmoset (Callithrix jacchus) gait kinematics.
    Young JW; Stricklen BM; Chadwell BA
    J Exp Biol; 2016 Sep; 219(Pt 17):2659-72. PubMed ID: 27582562
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Quantitative analyses of cross-sectional shape of the distal radius in three species of macaques.
    Kikuchi Y
    Primates; 2004 Apr; 45(2):129-34. PubMed ID: 14685819
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Uniqueness of primate forelimb posture during quadrupedal locomotion.
    Larson SG; Schmitt D; Lemelin P; Hamrick M
    Am J Phys Anthropol; 2000 May; 112(1):87-101. PubMed ID: 10766946
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Kinematic analysis of bipedal locomotion of a Japanese macaque that lost its forearms due to congenital malformation.
    Ogihara N; Usui H; Hirasaki E; Hamada Y; Nakatsukasa M
    Primates; 2005 Jan; 46(1):11-9. PubMed ID: 15688121
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Kinematics of the cercopithecine foot on arboreal and terrestrial substrates with implications for the interpretation of hominid terrestrial adaptations.
    Meldrum DJ
    Am J Phys Anthropol; 1991 Mar; 84(3):273-89. PubMed ID: 2024715
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Locomotor characteristics of the ground-walking chameleon Brookesia superciliaris.
    Ekhator C; Varshney A; Young MW; Tanis D; Granatosky MC; Diaz RE; Molnar JL
    J Exp Zool A Ecol Integr Physiol; 2023 Jul; 339(6):602-614. PubMed ID: 37260090
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Forward dynamic simulation of Japanese macaque bipedal locomotion demonstrates better energetic economy in a virtualised plantigrade posture.
    Oku H; Ide N; Ogihara N
    Commun Biol; 2021 Mar; 4(1):308. PubMed ID: 33686215
    [TBL] [Abstract][Full Text] [Related]  

  • 68. From such great heights: The effects of substrate height and the perception of risk on lemur locomotor mechanics.
    Schapker NM; Janisch J; Myers LC; Phelps T; Shapiro LJ; Young JW
    Am J Biol Anthropol; 2024 Jul; 184(3):e24917. PubMed ID: 38411385
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Arboreal locomotion in wild black-and-white snub-nosed monkeys (Rhinopithecus bieti).
    Isler K; Gruter CC
    Folia Primatol (Basel); 2006; 77(3):195-211. PubMed ID: 16612094
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Arboreal locomotion in rats - the challenge of maintaining stability.
    Schmidt A; Fischer MS
    J Exp Biol; 2010 Nov; 213(Pt 21):3615-24. PubMed ID: 20952609
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The Central Role of Small Vertical Substrates for the Origin of Grasping in Early Primates.
    Toussaint S; Llamosi A; Morino L; Youlatos D
    Curr Biol; 2020 May; 30(9):1600-1613.e3. PubMed ID: 32169214
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ageing and limb dominance effects on foot-ground clearance during treadmill and overground walking.
    Nagano H; Begg RK; Sparrow WA; Taylor S
    Clin Biomech (Bristol); 2011 Nov; 26(9):962-8. PubMed ID: 21719169
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The effects of substrate texture on the mechanics of quadrupedal arboreal locomotion in the gray short-tailed opossum (Monodelphis domestica).
    Lammers AR
    J Exp Zool A Ecol Genet Physiol; 2009 Dec; 311(10):813-23. PubMed ID: 19691059
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Locomotor kinematics of tree squirrels (Sciurus carolinensis) in free-ranging and laboratory environments: Implications for primate locomotion and evolution.
    Dunham NT; McNamara A; Shapiro L; Phelps T; Wolfe AN; Young JW
    J Exp Zool A Ecol Integr Physiol; 2019 Feb; 331(2):103-119. PubMed ID: 30369092
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The role of sensory feedback from carpal sinus hairs in locomotor kinematics of rats (Rattus norvegicus, Rodentia) during walking on narrow substrates.
    Niederschuh SJ; van Beesel J; Schmidt M
    Zoology (Jena); 2022 Dec; 155():126055. PubMed ID: 36423499
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of substrate and phylogeny on quadrupedal gait in free-ranging platyrrhines.
    Dunham NT; McNamara A; Shapiro LJ; Hieronymus TL; Phelps T; Young JW
    Am J Phys Anthropol; 2019 Dec; 170(4):565-578. PubMed ID: 31625141
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Growth and development of trabecular structure in the calcaneus of Japanese macaques (Macaca fuscata) reflects locomotor behavior, life history, and neuromuscular development.
    Saers JPP; Gordon AD; Ryan TM; Stock JT
    J Anat; 2022 Jul; 241(1):67-81. PubMed ID: 35178713
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Kinematic adaptations to tripedal locomotion in dogs.
    Goldner B; Fuchs A; Nolte I; Schilling N
    Vet J; 2015 May; 204(2):192-200. PubMed ID: 25862392
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Locomotor energetics in primates: gait mechanics and their relationship to the energetics of vertical and horizontal locomotion.
    Hanna JB; Schmitt D
    Am J Phys Anthropol; 2011 May; 145(1):43-54. PubMed ID: 21484760
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Development of an anatomically based whole-body musculoskeletal model of the Japanese macaque (Macaca fuscata).
    Ogihara N; Makishima H; Aoi S; Sugimoto Y; Tsuchiya K; Nakatsukasa M
    Am J Phys Anthropol; 2009 Jul; 139(3):323-38. PubMed ID: 19115360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.