BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 34328739)

  • 1. Proteomics for Low Cell Numbers: How to Optimize the Sample Preparation Workflow for Mass Spectrometry Analysis.
    Kassem S; van der Pan K; de Jager AL; Naber BAE; de Laat IF; Louis A; van Dongen JJM; Teodosio C; Díez P
    J Proteome Res; 2021 Sep; 20(9):4217-4230. PubMed ID: 34328739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Preparation of Peptides for Mass Spectrometry Analysis in Bottom-Up Proteomics Workflows.
    Wojtkiewicz M; Berg Luecke L; Kelly MI; Gundry RL
    Curr Protoc; 2021 Mar; 1(3):e85. PubMed ID: 33750040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Advances in high-throughput proteomic analysis].
    Wu Q; Sui X; Tian R
    Se Pu; 2021 Feb; 39(2):112-117. PubMed ID: 34227342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Recent progress in capillary electrophoresis-based high-sensitivity proteomics].
    Yang Y; Tian R
    Se Pu; 2020 Oct; 38(10):1125-1132. PubMed ID: 34213109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automation of peptide desalting for proteomic liquid chromatography - tandem mass spectrometry by centrifugal microfluidics.
    Klatt JN; Dinh TJ; Schilling O; Zengerle R; Schmidt F; Hutzenlaub T; Paust N
    Lab Chip; 2021 Jun; 21(11):2255-2264. PubMed ID: 33908535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Standardized and Reproducible Proteomics Protocol for Bottom-Up Quantitative Analysis of Protein Samples Using SP3 and Mass Spectrometry.
    Hughes CS; Sorensen PH; Morin GB
    Methods Mol Biol; 2019; 1959():65-87. PubMed ID: 30852816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishing Quality Control Procedures for Large-Scale Plasma Proteomics Analyses.
    Patterson KL; Arul AB; Choi MJ; Oliver NC; Whitaker MD; Bodrick AC; Libby JB; Hansen S; Dumitrescu L; Gifford KA; Jefferson AL; Hohman TJ; Robinson RAS
    J Am Soc Mass Spectrom; 2023 Jun; 34(6):1105-1116. PubMed ID: 37163770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Step-Wise Assessment and Optimization of Sample Handling Recovery Yield for Nanoproteomic Analysis of 1000 Mammalian Cells.
    Wu R; Xing S; Badv M; Didar TF; Lu Y
    Anal Chem; 2019 Aug; 91(16):10395-10400. PubMed ID: 31318197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sample preparation strategies for targeted proteomics via proteotypic peptides in human blood using liquid chromatography tandem mass spectrometry.
    Dittrich J; Becker S; Hecht M; Ceglarek U
    Proteomics Clin Appl; 2015 Feb; 9(1-2):5-16. PubMed ID: 25418444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent technical progress in sample preparation and liquid-phase separation-mass spectrometry for proteomic analysis of mass-limited samples.
    Yang Z; Sun L
    Anal Methods; 2021 Mar; 13(10):1214-1225. PubMed ID: 33629703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bottom-Up Proteomics: Advancements in Sample Preparation.
    Duong VA; Lee H
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated "Cells-To-Peptides" Sample Preparation Workflow for High-Throughput, Quantitative Proteomic Assays of Microbes.
    Chen Y; Guenther JM; Gin JW; Chan LJG; Costello Z; Ogorzalek TL; Tran HM; Blake-Hedges JM; Keasling JD; Adams PD; García Martín H; Hillson NJ; Petzold CJ
    J Proteome Res; 2019 Oct; 18(10):3752-3761. PubMed ID: 31436101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomics technologies for the global identification and quantification of proteins.
    Brewis IA; Brennan P
    Adv Protein Chem Struct Biol; 2010; 80():1-44. PubMed ID: 21109216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Reproducible Automated Proteomics Sample Preparation Workflow for Quantitative Mass Spectrometry.
    Fu Q; Kowalski MP; Mastali M; Parker SJ; Sobhani K; van den Broek I; Hunter CL; Van Eyk JE
    J Proteome Res; 2018 Jan; 17(1):420-428. PubMed ID: 29083196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.
    Audain E; Uszkoreit J; Sachsenberg T; Pfeuffer J; Liang X; Hermjakob H; Sanchez A; Eisenacher M; Reinert K; Tabb DL; Kohlbacher O; Perez-Riverol Y
    J Proteomics; 2017 Jan; 150():170-182. PubMed ID: 27498275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass Spectrometry-Based Bottom-Up Proteomics: Sample Preparation, LC-MS/MS Analysis, and Database Query Strategies.
    Wither MJ; Hansen KC; Reisz JA
    Curr Protoc Protein Sci; 2016 Nov; 86():16.4.1-16.4.20. PubMed ID: 27801520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Methods and applications of single-cell proteomics analysis based on mass spectrometry].
    Qin S; Bai Y; Liu H
    Se Pu; 2021 Feb; 39(2):142-151. PubMed ID: 34227347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated microscale analysis system for targeted liquid chromatography mass spectrometry proteomics on limited amounts of enriched cell populations.
    Martin JG; Rejtar T; Martin SA
    Anal Chem; 2013 Nov; 85(22):10680-5. PubMed ID: 24083476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serial in-solution digestion protocol for mass spectrometry-based glycomics and proteomics analysis.
    Sethi MK; Downs M; Zaia J
    Mol Omics; 2020 Aug; 16(4):364-376. PubMed ID: 32309832
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.