These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 34328889)
21. Ecological differences among hydrothermal vent symbioses may drive contrasting patterns of symbiont population differentiation. Breusing C; Xiao Y; Russell SL; Corbett-Detig RB; Li S; Sun J; Chen C; Lan Y; Qian PY; Beinart RA mSystems; 2023 Aug; 8(4):e0028423. PubMed ID: 37493648 [TBL] [Abstract][Full Text] [Related]
22. Full-length 16S rRNA amplicon sequencing reveals the variation of epibiotic microbiota associated with two shrimp species of Alvinocarididae: possibly co-determined by environmental heterogeneity and specific recognition of hosts. Hui M; Wang A; Cheng J; Sha Z PeerJ; 2022; 10():e13758. PubMed ID: 35966925 [TBL] [Abstract][Full Text] [Related]
23. Gene expression study in Bathymodiolus azoricus populations from three North Atlantic hydrothermal vent sites. Martins E; Bettencourt R Dev Comp Immunol; 2019 Oct; 99():103390. PubMed ID: 31077690 [TBL] [Abstract][Full Text] [Related]
24. Physiological impacts of acute Cu exposure on deep-sea vent mussel Bathymodiolus azoricus under a deep-sea mining activity scenario. Martins I; Goulart J; Martins E; Morales-Román R; Marín S; Riou V; Colaço A; Bettencourt R Aquat Toxicol; 2017 Dec; 193():40-49. PubMed ID: 29032352 [TBL] [Abstract][Full Text] [Related]
25. Insights into phage-bacteria interaction in cold seep Gigantidas platifrons through metagenomics and transcriptome analyses. Zhang Y; Chen H; Lian C; Cao L; Guo Y; Wang M; Zhong Z; Li M; Zhang H; Li C Sci Rep; 2024 May; 14(1):10540. PubMed ID: 38719945 [TBL] [Abstract][Full Text] [Related]
26. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Sun J; Zhang Y; Xu T; Zhang Y; Mu H; Zhang Y; Lan Y; Fields CJ; Hui JHL; Zhang W; Li R; Nong W; Cheung FKM; Qiu JW; Qian PY Nat Ecol Evol; 2017 Apr; 1(5):121. PubMed ID: 28812709 [TBL] [Abstract][Full Text] [Related]
27. The transcriptome of Bathymodiolus azoricus gill reveals expression of genes from endosymbionts and free-living deep-sea bacteria. Egas C; Pinheiro M; Gomes P; Barroso C; Bettencourt R Mar Drugs; 2012 Aug; 10(8):1765-1783. PubMed ID: 23015773 [TBL] [Abstract][Full Text] [Related]
28. Gene expression profiles provide insights into the survival strategies in deep-sea mussel (Bathymodiolus platifrons) of different developmental stages. Huang J; Huang P; Lu J; Wu N; Lin G; Zhang X; Cao H; Geng W; Zhai B; Xu C; Sun Z BMC Genomics; 2022 Apr; 23(Suppl 1):311. PubMed ID: 35439939 [TBL] [Abstract][Full Text] [Related]
29. Genetic diversity and connectivity of chemosynthetic cold seep mussels from the U.S. Atlantic margin. DeLeo DM; Morrison CL; Sei M; Salamone V; Demopoulos AWJ; Quattrini AM BMC Ecol Evol; 2022 Jun; 22(1):76. PubMed ID: 35715723 [TBL] [Abstract][Full Text] [Related]
30. Symbioses between deep-sea mussels (Mytilidae: Bathymodiolinae) and chemosynthetic bacteria: diversity, function and evolution. Duperron S; Lorion J; Samadi S; Gros O; Gaill F C R Biol; 2009; 332(2-3):298-310. PubMed ID: 19281960 [TBL] [Abstract][Full Text] [Related]
31. Metal interactions between the polychaete Branchipolynoe seepensis and the mussel Bathymodiolus azoricus from Mid-Atlantic-Ridge hydrothermal vent fields. Bebianno MJ; Cardoso C; Gomes T; Blasco J; Santos RS; Colaço A Mar Environ Res; 2018 Apr; 135():70-81. PubMed ID: 29402519 [TBL] [Abstract][Full Text] [Related]
32. Molecular identification of methane monooxygenase and quantitative analysis of methanotrophic endosymbionts under laboratory maintenance in Sun Y; Wang M; Li L; Zhou L; Wang X; Zheng P; Yu H; Li C; Sun S PeerJ; 2017; 5():e3565. PubMed ID: 28828234 [TBL] [Abstract][Full Text] [Related]
33. Comparative study of immune responses in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus and the shallow-water mussel Mytilus galloprovincialis challenged with Vibrio bacteria. Martins E; Figueras A; Novoa B; Santos RS; Moreira R; Bettencourt R Fish Shellfish Immunol; 2014 Oct; 40(2):485-99. PubMed ID: 25089010 [TBL] [Abstract][Full Text] [Related]
34. Metatranscriptomics profile of the gill microbial community during Barros I; Froufe H; Marnellos G; Egas C; Delaney J; Clamp M; Santos RS; Bettencourt R AIMS Microbiol; 2018; 4(2):240-260. PubMed ID: 31294213 [TBL] [Abstract][Full Text] [Related]
35. Effect of sulfide, osmotic, and thermal stresses on taurine transporter mRNA levels in the gills of the hydrothermal vent-specific mussel Bathymodiolus septemdierum. Nakamura-Kusakabe I; Nagasaki T; Kinjo A; Sassa M; Koito T; Okamura K; Yamagami S; Yamanaka T; Tsuchida S; Inoue K Comp Biochem Physiol A Mol Integr Physiol; 2016 Jan; 191():74-79. PubMed ID: 26431911 [TBL] [Abstract][Full Text] [Related]
37. Proteomic responses to metal-induced oxidative stress in hydrothermal vent-living mussels, Bathymodiolus sp., on the Southwest Indian Ridge. Cole C; Coelho AV; James RH; Connelly D; Sheehan D Mar Environ Res; 2014 May; 96():29-37. PubMed ID: 24080408 [TBL] [Abstract][Full Text] [Related]
38. Molecular identification of differentially regulated genes in the hydrothermal-vent species Bathymodiolus thermophilus and Paralvinella pandorae in response to temperature. Boutet I; Jollivet D; Shillito B; Moraga D; Tanguy A BMC Genomics; 2009 May; 10():222. PubMed ID: 19439073 [TBL] [Abstract][Full Text] [Related]
39. New geochemical tools for investigating resource and energy functions at deep-sea cold seeps using amino acid δ Vokhshoori NL; McCarthy MD; Close HG; Demopoulos AWJ; Prouty NG Geobiology; 2021 Nov; 19(6):601-617. PubMed ID: 34143929 [TBL] [Abstract][Full Text] [Related]
40. Deciphering deep-sea chemosynthetic symbiosis by single-nucleus RNA-sequencing. Wang H; He K; Zhang H; Zhang Q; Cao L; Li J; Zhong Z; Chen H; Zhou L; Lian C; Wang M; Chen K; Qian PY; Li C Elife; 2024 Aug; 12():. PubMed ID: 39102287 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]