These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 34328974)

  • 1. Control of toxic sulfide in mariculture environment by iron-coated ceramsite and immobilized sulfur oxidizing bacteria.
    Wang X; Wang J; Zhao YG; Maqbool F; Guo L; Gao M; Jin C; Ji J
    Sci Total Environ; 2021 Nov; 793():148658. PubMed ID: 34328974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfide-oxidizing activity and bacterial community structure in a fluidized bed reactor from a zero-discharge mariculture system.
    Cytryn E; Minz D; Gelfand I; Neori A; Gieseke A; De Beer D; Van Rijn J
    Environ Sci Technol; 2005 Mar; 39(6):1802-10. PubMed ID: 15819240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of Hydrogen Sulfide in Septic Tanks for Treating Black Water via an Immobilized Media of Sulfur-Oxidizing Bacteria.
    Kang JH; Namgung HG; Cho JI; Yoo SS; Lee BJ; Ji HW
    Int J Environ Res Public Health; 2020 Jan; 17(3):. PubMed ID: 31973062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H
    Hou N; Xia Y; Wang X; Liu H; Liu H; Xun L
    Biodegradation; 2018 Dec; 29(6):511-524. PubMed ID: 30141069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater.
    Rattanapan C; Boonsawang P; Kantachote D
    Bioresour Technol; 2009 Jan; 100(1):125-30. PubMed ID: 18619836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous electron shuttling by sulfide oxidizing bacteria as a novel strategy to produce electric current.
    de Rink R; B Lavender M; Liu D; Klok JBM; Sorokin DY; Ter Heijne A; Buisman CJN
    J Hazard Mater; 2022 Feb; 424(Pt A):127358. PubMed ID: 34879559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Odor reduction using hydrogen sulfide-removing bacteria in sludge filtration systems: Ferrous-oxidizing bacteria and sulfur-oxidizing bacteria.
    Choi D; Lee S; Park H; Kim J; Park W; Jung J
    J Biosci Bioeng; 2023 May; 135(5):395-401. PubMed ID: 36878769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur-oxidizing bacteria in environmental technology.
    Pokorna D; Zabranska J
    Biotechnol Adv; 2015 Nov; 33(6 Pt 2):1246-59. PubMed ID: 25701621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process.
    Sun M; Song W; Zhai LF; Cui YZ
    J Hazard Mater; 2013 Dec; 263 Pt 2():643-9. PubMed ID: 24220197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11.
    Lee EY; Lee NY; Cho KS; Ryu HW
    J Biosci Bioeng; 2006 Apr; 101(4):309-14. PubMed ID: 16716938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions and microbial variations in a biotrickling filter treating low concentrations of hydrogen sulfide and ammonia.
    Ying S; Kong X; Cai Z; Man Z; Xin Y; Liu D
    Chemosphere; 2020 Sep; 255():126931. PubMed ID: 32402879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of using different materials as bacterial carriers to treat hydrogen sulfide.
    Li Z; Sun T; Zhu N; Cao X; Jia J
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):579-88. PubMed ID: 18949473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.
    Li Y; Sun Q; Zhan J; Yang Y; Wang D
    J Environ Manage; 2016 Jul; 177():153-60. PubMed ID: 27093236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of sulfur-oxidizing bacteria as recognition elements in hydrogen sulfide biosensing system.
    Janfada B; Yazdian F; Amoabediny G; Rahaie M
    Biotechnol Appl Biochem; 2015; 62(3):349-56. PubMed ID: 25158614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen sulfide oxidation by a microbial consortium in a recirculation reactor system: sulfur formation under oxygen limitation and removal of phenols.
    Alcantara S; Velasco A; Muñoz A; Cid J; Revah S; Razo-Flores E
    Environ Sci Technol; 2004 Feb; 38(3):918-23. PubMed ID: 14968883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of iron in H(2)S emission behavior during the decomposition of biodegradable substrates in landfill.
    Du Y; Feng H; Zhang K; Hu LF; Fang CR; Shen DS; Long YY
    J Hazard Mater; 2014 May; 272():36-41. PubMed ID: 24675612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation.
    Barton LL; Fardeau ML; Fauque GD
    Met Ions Life Sci; 2014; 14():237-77. PubMed ID: 25416397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiobacillus sp. W5, the dominant autotroph oxidizing sulfide to sulfur in a reactor for aerobic treatment of sulfidic wastes.
    Visser JM; Stefess GC; Robertson LA; Kuenen JG
    Antonie Van Leeuwenhoek; 1997 Aug; 72(2):127-34. PubMed ID: 9298191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.
    Satoh H; Odagiri M; Ito T; Okabe S
    Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrate-reducing, sulfide-oxidizing bacteria as microbial oxidants for rapid biological sulfide removal.
    De Gusseme B; De Schryver P; De Cooman M; Verbeken K; Boeckx P; Verstraete W; Boon N
    FEMS Microbiol Ecol; 2009 Jan; 67(1):151-61. PubMed ID: 19120464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.