These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34329024)

  • 61. Toxicity of silver nanoparticles to green algae M. aeruginosa and alleviation by organic matter.
    Xiang L; Fang J; Cheng H
    Environ Monit Assess; 2018 Oct; 190(11):667. PubMed ID: 30349996
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Accumulation and effects of sediment-associated silver nanoparticles to sediment-dwelling invertebrates.
    Ramskov T; Forbes VE; Gilliland D; Selck H
    Aquat Toxicol; 2015 Sep; 166():96-105. PubMed ID: 26256765
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Impact of sulfidation on the bioavailability and toxicity of silver nanoparticles to Caenorhabditis elegans.
    Starnes DL; Unrine JM; Starnes CP; Collin BE; Oostveen EK; Ma R; Lowry GV; Bertsch PM; Tsyusko OV
    Environ Pollut; 2015 Jan; 196():239-46. PubMed ID: 25463719
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Low bioavailability of silver nanoparticles presents trophic toxicity to marine medaka (Oryzias melastigma).
    Wang J; Wang WX
    Environ Sci Technol; 2014 Jul; 48(14):8152-61. PubMed ID: 24937273
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Monitoring the Fate and Transformation of Silver Nanoparticles in Natural Waters.
    Furtado LM; Bundschuh M; Metcalfe CD
    Bull Environ Contam Toxicol; 2016 Oct; 97(4):449-55. PubMed ID: 27437947
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Gammarus fossarum (Crustacea, Amphipoda) as a model organism to study the effects of silver nanoparticles.
    Mehennaoui K; Georgantzopoulou A; Felten V; Andreï J; Garaud M; Cambier S; Serchi T; Pain-Devin S; Guérold F; Audinot JN; Giambérini L; Gutleb AC
    Sci Total Environ; 2016 Oct; 566-567():1649-1659. PubMed ID: 27328878
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Physiological effects and cellular responses of metamorphic larvae and juveniles of sea urchin exposed to ionic and nanoparticulate silver.
    Magesky A; Ribeiro CA; Pelletier É
    Aquat Toxicol; 2016 May; 174():208-27. PubMed ID: 26966875
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nanosilver-coated socks and their toxicity to zebrafish (Danio rerio) embryos.
    Gao J; Sepúlveda MS; Klinkhamer C; Wei A; Gao Y; Mahapatra CT
    Chemosphere; 2015 Jan; 119():948-952. PubMed ID: 25303653
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Differential behaviors of silver nanoparticles and silver ions towards cysteine: Bioremediation and toxicity to Phanerochaete chrysosporium.
    Huang Z; Zeng Z; Chen A; Zeng G; Xiao R; Xu P; He K; Song Z; Hu L; Peng M; Huang T; Chen G
    Chemosphere; 2018 Jul; 203():199-208. PubMed ID: 29614413
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Shifts in the metabolic function of a benthic estuarine microbial community following a single pulse exposure to silver nanoparticles.
    Echavarri-Bravo V; Paterson L; Aspray TJ; Porter JS; Winson MK; Thornton B; Hartl MG
    Environ Pollut; 2015 Jun; 201():91-9. PubMed ID: 25779207
    [TBL] [Abstract][Full Text] [Related]  

  • 71. On how environmental and experimental conditions affect the results of aquatic nanotoxicology on brine shrimp (Artemia salina): A case of silver nanoparticles toxicity.
    Asadi Dokht Lish R; Johari SA; Sarkheil M; Yu IJ
    Environ Pollut; 2019 Dec; 255(Pt 3):113358. PubMed ID: 31614246
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Antimicrobial effects of commercial silver nanoparticles are attenuated in natural streamwater and sediment.
    Colman BP; Wang SY; Auffan M; Wiesner MR; Bernhardt ES
    Ecotoxicology; 2012 Oct; 21(7):1867-77. PubMed ID: 22569948
    [TBL] [Abstract][Full Text] [Related]  

  • 73. An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment.
    Mühling M; Bradford A; Readman JW; Somerfield PJ; Handy RD
    Mar Environ Res; 2009 Dec; 68(5):278-83. PubMed ID: 19665221
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The effects of solubility of silver nanoparticles, accumulation, and toxicity to the aquatic plant Lemna minor.
    Souza LRR; Corrêa TZ; Bruni AT; da Veiga MAMS
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):16720-16733. PubMed ID: 33398747
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems.
    Angel BM; Batley GE; Jarolimek CV; Rogers NJ
    Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Residence time effects on phase transformation of nanosilver in reduced soils.
    Rick VandeVoort A; Tappero R; Arai Y
    Environ Sci Pollut Res Int; 2014; 21(13):7828-37. PubMed ID: 24638840
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Toxicity of silver and gold nanoparticles on marine microalgae.
    Moreno-Garrido I; Pérez S; Blasco J
    Mar Environ Res; 2015 Oct; 111():60-73. PubMed ID: 26002248
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Silver nanoparticles impact phototrophic biofilm communities to a considerably higher degree than ionic silver.
    González AG; Mombo S; Leflaive J; Lamy A; Pokrovsky OS; Rols JL
    Environ Sci Pollut Res Int; 2015 Jun; 22(11):8412-24. PubMed ID: 25539705
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Differential genotoxicity mechanisms of silver nanoparticles and silver ions.
    Li Y; Qin T; Ingle T; Yan J; He W; Yin JJ; Chen T
    Arch Toxicol; 2017 Jan; 91(1):509-519. PubMed ID: 27180073
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Impact of silver nanoparticles on marine diatom Skeletonema costatum.
    Huang J; Cheng J; Yi J
    J Appl Toxicol; 2016 Oct; 36(10):1343-54. PubMed ID: 27080522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.