These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 34329049)
21. Occurrence of tire and road wear particles in urban and peri-urban snowbanks, and their potential environmental implications. Rødland ES; Lind OC; Reid MJ; Heier LS; Okoffo ED; Rauert C; Thomas KV; Meland S Sci Total Environ; 2022 Jun; 824():153785. PubMed ID: 35182629 [TBL] [Abstract][Full Text] [Related]
22. Characterization of tire and road wear particles from road runoff indicates highly dynamic particle properties. Klöckner P; Seiwert B; Eisentraut P; Braun U; Reemtsma T; Wagner S Water Res; 2020 Oct; 185():116262. PubMed ID: 32798890 [TBL] [Abstract][Full Text] [Related]
23. Overall distribution of tire-wear particles, nano‑carbon black, and heavy metals in size-fractionated road dust collected from steel industrial complexes. Wi E; Park E; Shin H; Hong J; Jeong S; Kwon JT; Lee H; Lee J; Kim Y Sci Total Environ; 2023 Aug; 884():163878. PubMed ID: 37142046 [TBL] [Abstract][Full Text] [Related]
24. Physical and chemical characteristics of particles emitted by a passenger vehicle at the tire-road contact. Beji A; Deboudt K; Muresan B; Khardi S; Flament P; Fourmentin M; Lumiere L Chemosphere; 2023 Nov; 340():139874. PubMed ID: 37604335 [TBL] [Abstract][Full Text] [Related]
25. Tyre wear particles: an abundant yet widely unreported microplastic? Knight LJ; Parker-Jurd FNF; Al-Sid-Cheikh M; Thompson RC Environ Sci Pollut Res Int; 2020 May; 27(15):18345-18354. PubMed ID: 32185735 [TBL] [Abstract][Full Text] [Related]
26. Automated identification and quantification of tire wear particles (TWP) in airborne dust: SEM/EDX single particle analysis coupled to a machine learning classifier. Rausch J; Jaramillo-Vogel D; Perseguers S; Schnidrig N; Grobéty B; Yajan P Sci Total Environ; 2022 Jan; 803():149832. PubMed ID: 34525712 [TBL] [Abstract][Full Text] [Related]
27. Features of the highway road network that generate or retain tyre wear particles. Parker-Jurd FNF; Abbott GD; Guthery B; Parker-Jurd GMC; Thompson RC Environ Sci Pollut Res Int; 2024 Apr; 31(18):26675-26685. PubMed ID: 38451457 [TBL] [Abstract][Full Text] [Related]
28. Assessing the Biodegradability of Tire Tread Particles and Influencing Factors. Nielsen AF; Polesel F; Ahonen T; Palmqvist A; Baun A; Hartmann NB Environ Toxicol Chem; 2024 Jan; 43(1):31-41. PubMed ID: 37753867 [TBL] [Abstract][Full Text] [Related]
29. Analysis of Polymeric Components in Particulate Matter Using Pyrolysis-Gas Chromatography/Mass Spectrometry. Chae E; Choi SS Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956638 [TBL] [Abstract][Full Text] [Related]
30. Rapid estimation of tire-wear particle concentration in road dust using PM Jeong S; Shin H; Ryu H; Lee MG; Hong J; Kwon JT; Lee J; Kim Y Sci Total Environ; 2023 Dec; 905():167227. PubMed ID: 37734610 [TBL] [Abstract][Full Text] [Related]
31. Chemical Leaching from Tire Wear Particles with Various Treadwear Ratings. Jeong Y; Lee S; Woo SH Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627543 [TBL] [Abstract][Full Text] [Related]
32. Characterization of tire and road wear microplastic particle contamination in a road tunnel: From surface to release. Rødland ES; Lind OC; Reid M; Heier LS; Skogsberg E; Snilsberg B; Gryteselv D; Meland S J Hazard Mater; 2022 Aug; 435():129032. PubMed ID: 35650740 [TBL] [Abstract][Full Text] [Related]
33. Pilot analysis of tire tread characteristics and associated tire-wear particles in vehicles produced across distinct time periods. Zhang M; Li J; Yin H; Wang X; Qin Y; Yang Z; Wen Y; Luo J; Yin D; Ge Y; Wang C; Sun X; Xu L Sci Total Environ; 2024 Jul; 932():172760. PubMed ID: 38670369 [TBL] [Abstract][Full Text] [Related]
34. Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater. Järlskog I; Strömvall AM; Magnusson K; Gustafsson M; Polukarova M; Galfi H; Aronsson M; Andersson-Sköld Y Sci Total Environ; 2020 Aug; 729():138950. PubMed ID: 32371211 [TBL] [Abstract][Full Text] [Related]
36. Tire wear particle and leachate exposures from a pristine and road-worn tire to Hyalella azteca: Comparison of chemical content and biological effects. Halle LL; Palmqvist A; Kampmann K; Jensen A; Hansen T; Khan FR Aquat Toxicol; 2021 Feb; 232():105769. PubMed ID: 33561741 [TBL] [Abstract][Full Text] [Related]
37. Tire wear particles concentrations in gully pot sediments. Mengistu D; Heistad A; Coutris C Sci Total Environ; 2021 May; 769():144785. PubMed ID: 33477049 [TBL] [Abstract][Full Text] [Related]
38. Tire wear particle emissions: Measurement data where are you? Mennekes D; Nowack B Sci Total Environ; 2022 Jul; 830():154655. PubMed ID: 35314235 [TBL] [Abstract][Full Text] [Related]
39. Use of a deuterated internal standard with pyrolysis-GC/MS dimeric marker analysis to quantify tire tread particles in the environment. Unice KM; Kreider ML; Panko JM Int J Environ Res Public Health; 2012 Nov; 9(11):4033-55. PubMed ID: 23202830 [TBL] [Abstract][Full Text] [Related]
40. Toxic effects of environmentally persistent free radicals (EPFRs) on the surface of tire wear particles on freshwater biofilms: The alleviating role after sewage-incubation-aging. Li K; Kong D; Xiu X; Hao W; Xu D Chemosphere; 2023 Nov; 342():140179. PubMed ID: 37714474 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]