These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 34329076)
1. Confining polyacrylic acid on the surface of nanoscale zero-valent iron by aluminum hydroxide for in-situ anti-passivation. Hu YB; Ma L; Yuan B; Li XY J Hazard Mater; 2021 Oct; 420():126649. PubMed ID: 34329076 [TBL] [Abstract][Full Text] [Related]
2. Improved longevity of nanoscale zero-valent iron with a magnesium hydroxide coating shell for the removal of Cr(VI) in sand columns. Hu YB; Zhang M; Li XY Environ Int; 2019 Dec; 133(Pt B):105249. PubMed ID: 31665676 [TBL] [Abstract][Full Text] [Related]
3. Calcium hydroxide coating on highly reactive nanoscale zero-valent iron for in situ remediation application. Wei CJ; Xie YF; Wang XM; Li XY Chemosphere; 2018 Sep; 207():715-724. PubMed ID: 29859484 [TBL] [Abstract][Full Text] [Related]
4. Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer. Huang XY; Ling L; Zhang WX J Environ Sci (China); 2018 May; 67():4-13. PubMed ID: 29778172 [TBL] [Abstract][Full Text] [Related]
5. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid. Kim HS; Ahn JY; Kim C; Lee S; Hwang I Chemosphere; 2014 Oct; 113():93-100. PubMed ID: 25065795 [TBL] [Abstract][Full Text] [Related]
6. Chromate removal by surface-modified nanoscale zero-valent iron: Effect of different surface coatings and water chemistry. Dong H; He Q; Zeng G; Tang L; Zhang C; Xie Y; Zeng Y; Zhao F; Wu Y J Colloid Interface Sci; 2016 Jun; 471():7-13. PubMed ID: 26970032 [TBL] [Abstract][Full Text] [Related]
7. Surface coating with Ca(OH)2 for improvement of the transport of nanoscale zero-valent iron (nZVI) in porous media. Wei CJ; Li XY Water Sci Technol; 2013; 68(10):2287-93. PubMed ID: 24292480 [TBL] [Abstract][Full Text] [Related]
8. Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study. Sheng G; Hu J; Li H; Li J; Huang Y Chemosphere; 2016 Apr; 148():227-32. PubMed ID: 26807943 [TBL] [Abstract][Full Text] [Related]
9. Influence of fulvic acid on the colloidal stability and reactivity of nanoscale zero-valent iron. Dong H; Ahmad K; Zeng G; Li Z; Chen G; He Q; Xie Y; Wu Y; Zhao F; Zeng Y Environ Pollut; 2016 Apr; 211():363-9. PubMed ID: 26796746 [TBL] [Abstract][Full Text] [Related]
10. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Fu R; Yang Y; Xu Z; Zhang X; Guo X; Bi D Chemosphere; 2015 Nov; 138():726-34. PubMed ID: 26267258 [TBL] [Abstract][Full Text] [Related]
11. Overlooked encounter process that affects physical behaviors of stabilized nanoscale zero-valent iron during in situ groundwater remediation. Xie Y; Zhang M; Ma L; Du T; Zhou D; Fu ML; Yuan B; Li XY; Hu YB J Hazard Mater; 2024 Jan; 461():132547. PubMed ID: 37717448 [TBL] [Abstract][Full Text] [Related]
12. Insights into the mechanism underlying remediation of Cr(VI) contaminated aquifer using nanoscale zero-valent iron@reduced graphene oxide. Ren L; Zong B; Zhao R; Sun Y; Meng F; Wang R Environ Res; 2022 Nov; 214(Pt 4):113973. PubMed ID: 36029841 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of Nanoscale Zerovalent Iron (nZVI) Supported on Biochar for Chromium Remediation from Aqueous Solution and Soil. Wang H; Zhang M; Li H Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31726717 [TBL] [Abstract][Full Text] [Related]
14. Application of iron/aluminum bimetallic nanoparticle system for chromium-contaminated groundwater remediation. Ou JH; Sheu YT; Tsang DCW; Sun YJ; Kao CM Chemosphere; 2020 Oct; 256():127158. PubMed ID: 32470741 [TBL] [Abstract][Full Text] [Related]
15. Preparation of new materials by ethylene glycol modification and Al(OH) Zhang J; Zhu Q; Xing Z J Hazard Mater; 2020 May; 390():122049. PubMed ID: 32007862 [TBL] [Abstract][Full Text] [Related]
16. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes. Laumann S; Micić V; Hofmann T Water Res; 2014 Mar; 50():70-9. PubMed ID: 24361704 [TBL] [Abstract][Full Text] [Related]
17. Macroscopic and spectroscopic studies of the enhanced scavenging of Cr(VI) and Se(VI) from water by titanate nanotube anchored nanoscale zero-valent iron. Hu B; Chen G; Jin C; Hu J; Huang C; Sheng J; Sheng G; Ma J; Huang Y J Hazard Mater; 2017 Aug; 336():214-221. PubMed ID: 28494309 [TBL] [Abstract][Full Text] [Related]
18. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. Dong H; Deng J; Xie Y; Zhang C; Jiang Z; Cheng Y; Hou K; Zeng G J Hazard Mater; 2017 Jun; 332():79-86. PubMed ID: 28285109 [TBL] [Abstract][Full Text] [Related]
19. Facile modification of nanoscale zero-valent iron with high stability for Cr(VI) remediation. Peng Z; Xiong C; Wang W; Tan F; Xu Y; Wang X; Qiao X Sci Total Environ; 2017 Oct; 596-597():266-273. PubMed ID: 28437645 [TBL] [Abstract][Full Text] [Related]
20. Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems. Xie Y; Cwiertny DM Environ Sci Technol; 2010 Nov; 44(22):8649-8655. PubMed ID: 20968304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]