These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 34329098)

  • 1. New insights into the accessibility of native cellulose to environmental contaminants toward tritium behavior prediction.
    Nivesse AL; Baglan N; Montavon G; Péron O
    J Hazard Mater; 2021 Oct; 420():126619. PubMed ID: 34329098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose, proteins, starch and simple carbohydrates molecules control the hydrogen exchange capacity of bio-indicators and foodstuffs.
    Nivesse AL; Baglan N; Montavon G; Granger G; Péron O
    Chemosphere; 2021 Apr; 269():128676. PubMed ID: 33268089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards speciation of organically bound tritium and deuterium: Quantification of non-exchangeable forms in carbohydrate molecules.
    Péron O; Fourré E; Pastor L; Gégout C; Reeves B; Lethi HH; Rousseau G; Baglan N; Landesman C; Siclet F; Montavon G
    Chemosphere; 2018 Apr; 196():120-128. PubMed ID: 29294425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction and characterization of celluloses from various plant byproducts.
    Gabriel T; Belete A; Syrowatka F; Neubert RHH; Gebre-Mariam T
    Int J Biol Macromol; 2020 May; ():. PubMed ID: 32437811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid online equilibration method to determine the D/H ratios of non-exchangeable hydrogen in cellulose.
    Filot MS; Leuenberger M; Pazdur A; Boettger T
    Rapid Commun Mass Spectrom; 2006; 20(22):3337-44. PubMed ID: 17044122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-intrusive and reliable speciation of organically bound tritium in environmental matrices.
    Nivesse AL; Baglan N; Montavon G; Granger G; Péron O
    Talanta; 2021 Mar; 224():121803. PubMed ID: 33379029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Individual Hydrogen Bonds in Crystalline Regenerated Cellulose Using Resolved Polarized FTIR Spectra.
    Hishikawa Y; Togawa E; Kondo T
    ACS Omega; 2017 Apr; 2(4):1469-1476. PubMed ID: 31457518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate-binding module 17 containing CFP.
    Gao S; You C; Renneckar S; Bao J; Zhang YH
    Biotechnol Biofuels; 2014 Feb; 7(1):24. PubMed ID: 24552554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Irreversible transformations of native celluloses, upon exposure to elevated temperatures.
    Atalla RS; Crowley MF; Himmel ME; Atalla RH
    Carbohydr Polym; 2014 Jan; 100():2-8. PubMed ID: 24188831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose solvent-based biomass pretreatment breaks highly ordered hydrogen bonds in cellulose fibers of switchgrass.
    Sathitsuksanoh N; Zhu Z; Wi S; Zhang YH
    Biotechnol Bioeng; 2011 Mar; 108(3):521-9. PubMed ID: 20967803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotopic fractionation of tritium in biological systems.
    Le Goff P; Fromm M; Vichot L; Badot PM; Guétat P
    Environ Int; 2014 Apr; 65():116-26. PubMed ID: 24486969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superfine pulverisation pretreatment to enhance crystallinity of cellulose from Lycium barbarum L. leaves.
    Song P; Zhou F; Li F; Han Z; Wang L; Xu J; Zhang B; Wang M; Fan J; Zhang B
    Carbohydr Polym; 2021 Feb; 253():117207. PubMed ID: 33278976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave-Assisted Defibrillation of Microalgae.
    Zitzmann FL; Ward E; Meng X; Matharu AS
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of physicochemical characteristics of cellulosic substrates on enzymatic hydrolysis by means of a multi-stage process for cellobiose production.
    Vanderghem C; Jacquet N; Danthine S; Blecker C; Paquot M
    Appl Biochem Biotechnol; 2012 Mar; 166(6):1423-32. PubMed ID: 22270549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic hydrolysis and physical characterization of commercial celluloses and cellulose-based ion-exchange powdered mixed resins.
    Clarkin SD; Clesceri LS
    Appl Microbiol Biotechnol; 2002 Dec; 60(4):485-8. PubMed ID: 12466892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers.
    Ciolacu D; Kovac J; Kokol V
    Carbohydr Res; 2010 Mar; 345(5):621-30. PubMed ID: 20122684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The surface structure of well-ordered native cellulose fibrils in contact with water.
    Malm E; Bulone V; Wickholm K; Larsson PT; Iversen T
    Carbohydr Res; 2010 Jan; 345(1):97-100. PubMed ID: 19926077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrated fractions of cellulosics probed by infrared spectroscopy coupled with dynamics of deuterium exchange.
    Driemeier C; Mendes FM; Ling LY
    Carbohydr Polym; 2015 Aug; 127():152-9. PubMed ID: 25965468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesization, characterization and adsorption properties of sulfonic cellulose.
    Shi W; Zhou Y; Zhang Y; Li L; Yang Q
    Water Sci Technol; 2012; 66(12):2638-46. PubMed ID: 23109580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses.
    Atalla RH; Vanderhart DL
    Solid State Nucl Magn Reson; 1999 Oct; 15(1):1-19. PubMed ID: 10903080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.