These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 34329146)
1. Concentrating nutrients and recovering water and energy from source separated urine using osmotic microbial fuel cell. Gangadharan P; Vadekeetil A; Sibi R; Sheelam A Chemosphere; 2021 Dec; 285():131548. PubMed ID: 34329146 [TBL] [Abstract][Full Text] [Related]
2. Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation. Zhang F; Brastad KS; He Z Environ Sci Technol; 2011 Aug; 45(15):6690-6. PubMed ID: 21751820 [TBL] [Abstract][Full Text] [Related]
3. Production of electricity and water in an osmotic microbial fuel cell by using EDTA-Na Wang Z; Wu S; He Z Sci Total Environ; 2019 Aug; 677():382-389. PubMed ID: 31059881 [TBL] [Abstract][Full Text] [Related]
4. Effects of draw solutions and membrane conditions on electricity generation and water flux in osmotic microbial fuel cells. Ge Z; He Z Bioresour Technol; 2012 Apr; 109():70-6. PubMed ID: 22305538 [TBL] [Abstract][Full Text] [Related]
5. Membrane cleaning and performance insight of osmotic microbial fuel cell. Xue W; He Y; Yumunthama S; Udomkittayachai N; Hu Y; Tabucanon AS; Zhang X; Kurniawan TA Chemosphere; 2021 Dec; 285():131549. PubMed ID: 34710965 [TBL] [Abstract][Full Text] [Related]
6. Understanding electricity generation in osmotic microbial fuel cells through integrated experimental investigation and mathematical modeling. Qin M; Ping Q; Lu Y; Abu-Reesh IM; He Z Bioresour Technol; 2015 Nov; 195():194-201. PubMed ID: 26091574 [TBL] [Abstract][Full Text] [Related]
7. Employment of osmotic pump as a novel feeding system to operate the laminar-flow microfluidic microbial fuel cell. Cao TN; Chang CC; Mukhtar H; Sun Q; Li Y; Yu CP Environ Res; 2022 Dec; 215(Pt 3):114347. PubMed ID: 36116490 [TBL] [Abstract][Full Text] [Related]
8. Arsenic treatment and power generation with a dual-chambered fuel cell with anionic and cationic membranes using NaHCO Maitlo HA; Kim JH; Park JY Chemosphere; 2017 Apr; 172():138-146. PubMed ID: 28064123 [TBL] [Abstract][Full Text] [Related]
9. Exploring the limitations of forward osmosis for direct hydroponic fertigation: Impact of ion transfer and fertilizer composition on effective dilution. Mendoza E; Buttiglieri G; Blandin G; Comas J J Environ Manage; 2022 Mar; 305():114339. PubMed ID: 34954684 [TBL] [Abstract][Full Text] [Related]
10. Effects of current generation and electrolyte pH on reverse salt flux across thin film composite membrane in osmotic microbial fuel cells. Qin M; Abu-Reesh IM; He Z Water Res; 2016 Nov; 105():583-590. PubMed ID: 27693970 [TBL] [Abstract][Full Text] [Related]
11. Techno-economic feasibility of recovering phosphorus, nitrogen and water from dilute human urine via forward osmosis. Volpin F; Heo H; Hasan Johir MA; Cho J; Phuntsho S; Shon HK Water Res; 2019 Mar; 150():47-55. PubMed ID: 30503874 [TBL] [Abstract][Full Text] [Related]
12. Human urine as a forward osmosis draw solution for the application of microalgae dewatering. Volpin F; Yu H; Cho J; Lee C; Phuntsho S; Ghaffour N; Vrouwenvelder JS; Shon HK J Hazard Mater; 2019 Oct; 378():120724. PubMed ID: 31326765 [TBL] [Abstract][Full Text] [Related]
13. Volume reduction and water reclamation of reverse osmosis concentrate from coal chemical industry by forward osmosis with an osmotic backwash strategy. Lu J; Wang X Water Sci Technol; 2020 Jun; 81(12):2674-2684. PubMed ID: 32857752 [TBL] [Abstract][Full Text] [Related]
14. Membrane fouling and anti-fouling strategies using RO retentate from a municipal water recycling plant as the feed for osmotic power generation. Chen SC; Amy GL; Chung TS Water Res; 2016 Jan; 88():144-155. PubMed ID: 26492341 [TBL] [Abstract][Full Text] [Related]
15. Technologies for the recovery of nutrients, water and energy from human urine: A review. Patel A; Mungray AA; Mungray AK Chemosphere; 2020 Nov; 259():127372. PubMed ID: 32599379 [TBL] [Abstract][Full Text] [Related]
16. Waste or Gold? Bioelectrochemical Resource Recovery in Source-Separated Urine. Nazari S; Zinatizadeh AA; Mirghorayshi M; van Loosdrecht MCM Trends Biotechnol; 2020 Sep; 38(9):990-1006. PubMed ID: 32345461 [TBL] [Abstract][Full Text] [Related]
17. Module-scale analysis of pressure retarded osmosis: performance limitations and implications for full-scale operation. Straub AP; Lin S; Elimelech M Environ Sci Technol; 2014 Oct; 48(20):12435-44. PubMed ID: 25222561 [TBL] [Abstract][Full Text] [Related]
18. Electro-Forward Osmosis. Son M; Kim T; Yang W; Gorski CA; Logan BE Environ Sci Technol; 2019 Jul; 53(14):8352-8361. PubMed ID: 31267728 [TBL] [Abstract][Full Text] [Related]
19. Ferric and cobaltous hydroacid complexes for forward osmosis (FO) processes. Ge Q; Fu F; Chung TS Water Res; 2014 Jul; 58():230-8. PubMed ID: 24768702 [TBL] [Abstract][Full Text] [Related]