These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 34329161)
1. Thermal Control Design and Packaging for Surface Acoustic Wave Devices in Acoustofluidics. Han J; Yang F; Hu H; Huang Q; Lei Y; Li M IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):386-398. PubMed ID: 34329161 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of Surface Acoustic Wave Devices on Lithium Niobate. Mei J; Zhang N; Friend J J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628169 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of Nanoheight Channels Incorporating Surface Acoustic Wave Actuation via Lithium Niobate for Acoustic Nanofluidics. Zhang N; Friend J J Vis Exp; 2020 Feb; (156):. PubMed ID: 32090998 [TBL] [Abstract][Full Text] [Related]
4. Optimized, Omnidirectional Surface Acoustic Wave Source: 152° Y-Rotated Cut of Lithium Niobate for Acoustofluidics. Zhang N; Mei J; Gopesh T; Friend J IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):2176-2186. PubMed ID: 32396083 [TBL] [Abstract][Full Text] [Related]
5. The complexity of surface acoustic wave fields used for microfluidic applications. Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142 [TBL] [Abstract][Full Text] [Related]
6. Development and characterisation of acoustofluidic devices using detachable electrodes made from PCB. Mikhaylov R; Wu F; Wang H; Clayton A; Sun C; Xie Z; Liang D; Dong Y; Yuan F; Moschou D; Wu Z; Shen MH; Yang J; Fu Y; Yang Z; Burton C; Errington RJ; Wiltshire M; Yang X Lab Chip; 2020 May; 20(10):1807-1814. PubMed ID: 32319460 [TBL] [Abstract][Full Text] [Related]
7. Emerging on-chip surface acoustic wave technology for small biomaterials manipulation and characterization. Gao Y; Fajrial AK; Yang T; Ding X Biomater Sci; 2021 Mar; 9(5):1574-1582. PubMed ID: 33283794 [TBL] [Abstract][Full Text] [Related]
8. Optimal selection of piezoelectric substrates and crystal cuts for SAW-based pressure and temperature sensors. Zhang X; Wang FY; Li L IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1207-16. PubMed ID: 17571819 [TBL] [Abstract][Full Text] [Related]
9. Exploring Low-Loss Surface Acoustic Wave Devices on Heterogeneous Substrates. Wu J; Zhang S; Zhang L; Zhou H; Zheng P; Yao H; Li Z; Huang K; Wu T; Ou X IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Aug; 69(8):2579-2584. PubMed ID: 35653448 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave. Liu X; Zheng T; Wang C Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304 [TBL] [Abstract][Full Text] [Related]
12. Thermal considerations for microswimmer trap-and-release using standing surface acoustic waves. Cui M; Kim M; Weisensee PB; Meacham JM Lab Chip; 2021 Jun; 21(13):2534-2543. PubMed ID: 33998632 [TBL] [Abstract][Full Text] [Related]
13. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices. Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018 [TBL] [Abstract][Full Text] [Related]
14. Geometric Nonlinear Model for Prediction of Frequency-Temperature Behavior of SAW Devices for Nanosensor Applications. Chen Z; Zhang Q; Li C; Fu S; Qiu X; Wang X; Wu H Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751406 [TBL] [Abstract][Full Text] [Related]
15. A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor. Sonato A; Agostini M; Ruffato G; Gazzola E; Liuni D; Greco G; Travagliati M; Cecchini M; Romanato F Lab Chip; 2016 Apr; 16(7):1224-33. PubMed ID: 26932784 [TBL] [Abstract][Full Text] [Related]
16. Temperature field regulation of a droplet using an acoustothermal heater. Li L; Wu E; Jia K; Yang K Lab Chip; 2021 Aug; 21(16):3184-3194. PubMed ID: 34195725 [TBL] [Abstract][Full Text] [Related]
17. Integrated active mixing and biosensing using surface acoustic waves (SAW) and surface plasmon resonance (SPR) on a common substrate. Renaudin A; Chabot V; Grondin E; Aimez V; Charette PG Lab Chip; 2010 Jan; 10(1):111-5. PubMed ID: 20024058 [TBL] [Abstract][Full Text] [Related]
18. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates. Chiu CS; Gwo S Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384 [TBL] [Abstract][Full Text] [Related]
19. Mode Analysis of Pt/LGS Surface Acoustic Wave Devices. Xu H; Jin H; Dong S; Song X; Chen J; Xuan W; Huang S; Shi L; Luo J Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322434 [TBL] [Abstract][Full Text] [Related]
20. Application of Shear Horizontal Surface Acoustic Wave (SH-SAW) Immunosensor in Point-of-Care Diagnosis. Cheng CH; Yatsuda H; Goto M; Kondoh J; Liu SH; Wang RYL Biosensors (Basel); 2023 Jun; 13(6):. PubMed ID: 37366970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]