These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 34329211)

  • 1. Suppression of avoided resonance crossing in microresonators.
    Kim C; Yvind K; Pu M
    Opt Lett; 2021 Aug; 46(15):3508-3511. PubMed ID: 34329211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong polarization mode coupling in microresonators.
    Ramelow S; Farsi A; Clemmen S; Levy JS; Johnson AR; Okawachi Y; Lamont MR; Lipson M; Gaeta AL
    Opt Lett; 2014 Sep; 39(17):5134-7. PubMed ID: 25166092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators.
    Chang L; Xie W; Shu H; Yang QF; Shen B; Boes A; Peters JD; Jin W; Xiang C; Liu S; Moille G; Yu SP; Wang X; Srinivasan K; Papp SB; Vahala K; Bowers JE
    Nat Commun; 2020 Mar; 11(1):1331. PubMed ID: 32165610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal tuning of mode crossing and the perfect soliton crystal in a Si
    Li J; Wan S; Peng JL; Wang ZY; Niu R; Zou CL; Guo GC; Dong CH
    Opt Express; 2022 Apr; 30(8):13690-13698. PubMed ID: 35472976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photolithography allows high-Q AlN microresonators for near octave-spanning frequency comb and harmonic generation.
    Liu J; Weng H; Afridi AA; Li J; Dai J; Ma X; Long H; Zhang Y; Lu Q; Donegan JF; Guo W
    Opt Express; 2020 Jun; 28(13):19270-19280. PubMed ID: 32672207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Octave-spanning Kerr frequency comb generation with stimulated Raman scattering in an AlN microresonator.
    Weng H; Liu J; Afridi AA; Li J; Dai J; Ma X; Zhang Y; Lu Q; Donegan JF; Guo W
    Opt Lett; 2021 Feb; 46(3):540-543. PubMed ID: 33528404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression.
    Huang SW; Liu H; Yang J; Yu M; Kwong DL; Wong CW
    Sci Rep; 2016 May; 6():26255. PubMed ID: 27181420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh-Q AlGaAs-on-insulator microresonators for integrated nonlinear photonics.
    Xie W; Chang L; Shu H; Norman JC; Peters JD; Wang X; Bowers JE
    Opt Express; 2020 Oct; 28(22):32894-32906. PubMed ID: 33114964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation.
    Kordts A; Pfeiffer MH; Guo H; Brasch V; Kippenberg TJ
    Opt Lett; 2016 Feb; 41(3):452-5. PubMed ID: 26907395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase steps and resonator detuning measurements in microresonator frequency combs.
    Del'Haye P; Coillet A; Loh W; Beha K; Papp SB; Diddams SA
    Nat Commun; 2015 Jan; 6():5668. PubMed ID: 25565467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable frequency combs based on dual microring resonators.
    Miller SA; Okawachi Y; Ramelow S; Luke K; Dutt A; Farsi A; Gaeta AL; Lipson M
    Opt Express; 2015 Aug; 23(16):21527-40. PubMed ID: 26367998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mode spectrum and temporal soliton formation in optical microresonators.
    Herr T; Brasch V; Jost JD; Mirgorodskiy I; Lihachev G; Gorodetsky ML; Kippenberg TJ
    Phys Rev Lett; 2014 Sep; 113(12):123901. PubMed ID: 25279630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminum nitride-on-sapphire platform for integrated high-Q microresonators.
    Liu X; Sun C; Xiong B; Wang L; Wang J; Han Y; Hao Z; Li H; Luo Y; Yan J; Wei T; Zhang Y; Wang J
    Opt Express; 2017 Jan; 25(2):587-594. PubMed ID: 28157948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal and Nonlinear Dissipative-Soliton Dynamics in Kerr-Microresonator Frequency Combs.
    Stone JR; Briles TC; Drake TE; Spencer DT; Carlson DR; Diddams SA; Papp SB
    Phys Rev Lett; 2018 Aug; 121(6):063902. PubMed ID: 30141662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental demonstration of waveguide-coupled round-cornered octagonal microresonators in silicon nitride.
    Li C; Poon AW
    Opt Lett; 2005 Mar; 30(5):546-8. PubMed ID: 15789731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition between Raman and Kerr effects in microresonator comb generation.
    Okawachi Y; Yu M; Venkataraman V; Latawiec PM; Griffith AG; Lipson M; Lončar M; Gaeta AL
    Opt Lett; 2017 Jul; 42(14):2786-2789. PubMed ID: 28708169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microresonators in CMOS compatible substrate.
    Yegnanarayanan S; Soltani M; Li Q; Hosseini ES; Eftekhar AA; Adibi A
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1508-24. PubMed ID: 20355540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deterministic generation of single soliton Kerr frequency comb in microresonators by a single shot pulsed trigger.
    Kang Z; Li F; Yuan J; Nakkeeran K; Kutz JN; Wu Q; Yu C; Wai PKA
    Opt Express; 2018 Jul; 26(14):18563-18577. PubMed ID: 30114034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD.
    Liang W; Savchenkov AA; Ilchenko VS; Eliyahu D; Seidel D; Matsko AB; Maleki L
    Opt Lett; 2014 May; 39(10):2920-3. PubMed ID: 24978237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and characterization of microring reflectors with a waveguide crossing.
    Shi W; Vafaei R; Guillén Torres MA; Jaeger NA; Chrostowski L
    Opt Lett; 2010 Sep; 35(17):2901-3. PubMed ID: 20808363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.