These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34329224)

  • 1. Fabrication of nanogap structures through spatially shaped femtosecond laser modification with the assistance of wet chemical etching.
    Zhou S; Li X; Huang J; Wang Z; Liu Y; Gao S; Xu Z; Jiang L
    Opt Lett; 2021 Aug; 46(15):3560-3563. PubMed ID: 34329224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanogap biosensors for electrical and label-free detection of biomolecular interactions.
    Kyu Kim S; Cho H; Park HJ; Kwon D; Min Lee J; Hyun Chung B
    Nanotechnology; 2009 Nov; 20(45):455502. PubMed ID: 19822932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable high-throughput high-quality femtosecond laser-enhanced chemical etching by temporal pulse shaping based on electron density control.
    Zhao M; Hu J; Jiang L; Zhang K; Liu P; Lu Y
    Sci Rep; 2015 Aug; 5():13202. PubMed ID: 26307148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wafer-scale fabrication of high-quality tunable gold nanogap arrays for surface-enhanced Raman scattering.
    Le-The H; Lozeman JJA; Lafuente M; Muñoz P; Bomer JG; Duy-Tong H; Berenschot E; van den Berg A; Tas NR; Odijk M; Eijkel JCT
    Nanoscale; 2019 Jul; 11(25):12152-12160. PubMed ID: 31194202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etching.
    Wang Z; Jiang L; Li X; Wang A; Yao Z; Zhang K; Lu Y
    Opt Lett; 2018 Jan; 43(1):98-101. PubMed ID: 29328212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled, Low-Temperature Nanogap Propagation in Graphene Using Femtosecond Laser Patterning.
    Maurice A; Bodelot L; Tay BK; Lebental B
    Small; 2018 Jul; ():e1801348. PubMed ID: 29971912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of segmented gold nanorods with nanogaps by the electrochemical wet etching technique for single-electron transistor applications.
    Van Hoang N; Kumar S; Kim GH
    Nanotechnology; 2009 Mar; 20(12):125607. PubMed ID: 19420476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass.
    Sugioka K; Xu J; Wu D; Hanada Y; Wang Z; Cheng Y; Midorikawa K
    Lab Chip; 2014 Sep; 14(18):3447-58. PubMed ID: 25012238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-layer nanogap array for high-performance SERS substrate.
    Seol ML; Kim JH; Kang T; Im H; Kim S; Kim B; Choi YK
    Nanotechnology; 2011 Jun; 22(23):235303. PubMed ID: 21483043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Maskless Fabrication of Bionic Unidirectional Liquid Spreading Surfaces Using a Phase Spatially Shaped Femtosecond Laser.
    Chen X; Li X; Zuo P; Liang M; Li X; Xu C; Yuan Y; Wang S
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13781-13791. PubMed ID: 33703880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy.
    Cai H; Meng Q; Zhao H; Li M; Dai Y; Lin Y; Ding H; Pan N; Tian Y; Luo Y; Wang X
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20189-20195. PubMed ID: 29799180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trench Formation under the Tunable Nanogap: Its Depth Depends on Maximum Strain and Periodicity.
    Park D; Lee D; Moghaddam MH; Kim DS
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wet-etching-assisted femtosecond laser holographic processing of a sapphire concave microlens array.
    Cao XW; Lu YM; Fan H; Xia H; Zhang L; Zhang YL
    Appl Opt; 2018 Nov; 57(32):9604-9608. PubMed ID: 30461745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and fabrication of crack-junctions.
    Dubois V; Niklaus F; Stemme G
    Microsyst Nanoeng; 2017; 3():17042. PubMed ID: 31057876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 25 nm Single-Crystal Silicon Nanowires Fabricated by Anisotropic Wet Etching.
    Chu HM; Nguyen MV; Vu HN; Hane K
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1525-529. PubMed ID: 29688670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel nanogap fabrication with nanometer size control using III-V semiconductor epitaxial technology.
    Fernández-Martínez I; González Y; Briones F
    Nanotechnology; 2008 Jul; 19(27):275302. PubMed ID: 21828698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization-independent etching of fused silica based on electrons dynamics control by shaped femtosecond pulse trains for microchannel fabrication.
    Yan X; Jiang L; Li X; Zhang K; Xia B; Liu P; Qu L; Lu Y
    Opt Lett; 2014 Sep; 39(17):5240-3. PubMed ID: 25166119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable Manufacturing of Nanogaps.
    Dubois V; Bleiker SJ; Stemme G; Niklaus F
    Adv Mater; 2018 Nov; 30(46):e1801124. PubMed ID: 30156331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of microlenses with continuously variable numerical aperture through a temporally shaped femtosecond laser.
    Qin B; Li X; Yao Z; Huang J; Liu Y; Wang A; Gao S; Zhou S; Wang Z
    Opt Express; 2021 Feb; 29(3):4596-4606. PubMed ID: 33771033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.