These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34329275)

  • 1. Polymer-coated moth-eye hybrid structure for broadband antireflection in the terahertz region.
    Yu X; Goto K; Yasunaga Y; Soeda J; Ono S
    Opt Lett; 2021 Aug; 46(15):3761-3764. PubMed ID: 34329275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-Broadband THz Antireflective Coating with Polymer Composites.
    Cai B; Chen H; Xu G; Zhao H; Sugihara O
    Polymers (Basel); 2017 Nov; 9(11):. PubMed ID: 30965877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-IR Light-Tunable Omnidirectional Broadband Terahertz Wave Antireflection Based on a PEDOT:PSS/Graphene Hybrid Coating.
    Lai W; Liu G; Gou H; Wu H; Rahimi-Iman A
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43868-43876. PubMed ID: 36106485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Newly Developed Broadband Antireflective Nanostructures by Coating a Low-Index MgF
    Yoo GY; Nurrosyid N; Lee S; Jeong Y; Yoon I; Kim C; Kim W; Jang SY; Do YR
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10626-10636. PubMed ID: 32030970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning.
    Ji S; Park J; Lim H
    Nanoscale; 2012 Aug; 4(15):4603-10. PubMed ID: 22706661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Study on Broadband Antireflection of Moth-Eye Nanostructured Polymer Film with Flexible Polyethylene Terephthalate Substrate.
    Lan J; Yang Y; Hu S
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal moth eye nanostructure array on transparent glass towards broadband antireflection.
    Ji S; Song K; Nguyen TB; Kim N; Lim H
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10731-7. PubMed ID: 24116953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple fabrication of an antireflective hemispherical surface structure using a self-assembly method for the terahertz frequency range.
    Kim DS; Kim DJ; Kim DH; Hwang S; Jang JH
    Opt Lett; 2012 Jul; 37(13):2742-4. PubMed ID: 22743514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antireflection Coatings Based on PEDOT:PSS Conductive Polymer Using d-Sorbitol Additives for Terahertz Spectroscopy and Imaging.
    Yang S; Shi L; Chen B; Qiu H; Li W; Li C; Mao Z; Guo H; Xiang X; Zhang C; Wu J; Fan K; Jin B; Chen J; Wu P
    ACS Appl Mater Interfaces; 2023 Jul; 15(27):32875-32884. PubMed ID: 37387484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband terahertz antireflective microstructures on quartz crystal surface by CO
    Wang D; Li Y; Zhang C; Liao W; Li Z; Zhang Q; Xu Q
    Opt Express; 2019 Jun; 27(13):18351-18362. PubMed ID: 31252780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of anti-reflective micro-structure at terahertz frequency by using Chinese acupuncture needles.
    Li Y; Cai B; Zhu Y
    Opt Lett; 2015 Jun; 40(12):2917-20. PubMed ID: 26076295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband high-absorbance coating for terahertz radiometry.
    Deng Y; Sun Q; Yu J; Lin Y; Wang J
    Opt Express; 2013 Mar; 21(5):5737-42. PubMed ID: 23482145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance All-Optical Terahertz Modulator Based on Graphene/TiO
    Wei M; Zhang D; Li Y; Zhang L; Jin L; Wen T; Bai F; Zhang H
    Nanoscale Res Lett; 2019 May; 14(1):159. PubMed ID: 31076907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-generated broadband antireflection structures for freeform silicon lenses at terahertz frequencies.
    Brahm A; Döring S; Wilms A; Notni G; Nolte S; Tünnermann A
    Appl Opt; 2014 May; 53(13):2886-91. PubMed ID: 24921876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces.
    Ye L; Chen X; Cai G; Zhu J; Liu N; Liu QH
    Nanomaterials (Basel); 2018 Jul; 8(8):. PubMed ID: 30042289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wide-Angle Broadband Antireflection Coatings Prepared by Atomic Layer Deposition.
    Pfeiffer K; Ghazaryan L; Schulz U; Szeghalmi A
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21887-21894. PubMed ID: 31083898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quintic refractive index profile-based funnel-shaped silicon antireflective structures for enhanced photodetector performance.
    Kim BJ; Jo MS; Yang JS; Chung MK; Kim SH; Yoon JB
    Sci Rep; 2024 May; 14(1):10410. PubMed ID: 38710917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond-laser-fabricated periodic tapered structures on a silicon substrate for terahertz antireflection.
    Yu X; Ohta M; Takizawa N; Mikame K; Ono S; Bae J
    Appl Opt; 2019 Dec; 58(35):9595-9602. PubMed ID: 31873558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric Plasmonic Moth-Eye Nanoarrays with Side Opening for Broadband Incident-Angle-Insensitive Antireflection and Absorption.
    Xia R; Li Y; You S; Lu C; Xu W; Ni Y
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active broadband terahertz wave impedance matching based on optically doped graphene-silicon heterojunction.
    Du W; Zhou Y; Yao Z; Huang Y; He C; Zhang L; He Y; Zhu L; Xu X
    Nanotechnology; 2019 May; 30(19):195705. PubMed ID: 30699402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.