BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 34329706)

  • 21. Evaluation of Metabolic Engineering Strategies on 2-Ketoisovalerate Production by Escherichia coli.
    Zhou L; Zhu Y; Yuan Z; Liu G; Sun Z; Du S; Liu H; Li Y; Liu H; Zhou Z
    Appl Environ Microbiol; 2022 Sep; 88(17):e0097622. PubMed ID: 35980178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of Escherichia coli for the production of fumaric acid.
    Song CW; Kim DI; Choi S; Jang JW; Lee SY
    Biotechnol Bioeng; 2013 Jul; 110(7):2025-34. PubMed ID: 23436277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. O-Succinyl-l-homoserine overproduction with enhancement of the precursor succinyl-CoA supply by engineered Escherichia coli.
    Liu P; Liu JS; Zhu WY; Zhang B; Liu ZQ; Zheng YG
    J Biotechnol; 2021 Jan; 325():164-172. PubMed ID: 33157196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose.
    Soma Y; Fujiwara Y; Nakagawa T; Tsuruno K; Hanai T
    Metab Eng; 2017 Sep; 43(Pt A):54-63. PubMed ID: 28800966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fermentative production of the unnatural amino acid L-2-aminobutyric acid based on metabolic engineering.
    Xu JM; Li JQ; Zhang B; Liu ZQ; Zheng YG
    Microb Cell Fact; 2019 Feb; 18(1):43. PubMed ID: 30819198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic Engineering of a Homoserine-Derived Non-Natural Pathway for the De Novo Production of 1,3-Propanediol from Glucose.
    Zhong W; Zhang Y; Wu W; Liu D; Chen Z
    ACS Synth Biol; 2019 Mar; 8(3):587-595. PubMed ID: 30802034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering of Phosphoserine Aminotransferase Increases the Conversion of l-Homoserine to 4-Hydroxy-2-ketobutyrate in a Glycerol-Independent Pathway of 1,3-Propanediol Production from Glucose.
    Zhang Y; Ma C; Dischert W; Soucaille P; Zeng AP
    Biotechnol J; 2019 Sep; 14(9):e1900003. PubMed ID: 30925016
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering Escherichia coli for l-homoserine production.
    Sun BY; Wang FQ; Zhao J; Tao XY; Liu M; Wei DZ
    J Basic Microbiol; 2023 Feb; 63(2):168-178. PubMed ID: 36284486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Huang CC; Moo-Young M; Chou CP
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5259-5272. PubMed ID: 32291486
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flux redistribution of central carbon metabolism for efficient production of l-tryptophan in Escherichia coli.
    Xiong B; Zhu Y; Tian D; Jiang S; Fan X; Ma Q; Wu H; Xie X
    Biotechnol Bioeng; 2021 Mar; 118(3):1393-1404. PubMed ID: 33399214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic engineering and pathway construction for
    Li B; Huang LG; Yang YF; Chen YY; Zhou XJ; Liu ZQ; Zheng YG
    3 Biotech; 2023 Jun; 13(6):173. PubMed ID: 37188286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic engineering of
    Huang JF; Zhang B; Shen ZY; Liu ZQ; Zheng YG
    3 Biotech; 2018 Jul; 8(7):310. PubMed ID: 30002999
    [No Abstract]   [Full Text] [Related]  

  • 33. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Construction of a synthetic metabolic pathway for the production of 2,4-dihydroxybutyric acid from homoserine.
    Walther T; Calvayrac F; Malbert Y; Alkim C; Dressaire C; Cordier H; François JM
    Metab Eng; 2018 Jan; 45():237-245. PubMed ID: 29248755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis of 1,3-Propanediol via a New Pathway from Glucose in
    Li M; Zhang Y; Li J; Tan T
    ACS Synth Biol; 2023 Jul; 12(7):2083-2093. PubMed ID: 37316976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial production of L-methionine and its precursors using systems metabolic engineering.
    Cai M; Liu Z; Zhao Z; Wu H; Xu M; Rao Z
    Biotechnol Adv; 2023 Dec; 69():108260. PubMed ID: 37739275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rerouting Fluxes of the Central Carbon Metabolism and Relieving Mechanism-Based Inactivation of l-Aspartate-α-decarboxylase for Fermentative Production of β-Alanine in
    Li B; Zhang B; Wang P; Cai X; Chen YY; Yang YF; Liu ZQ; Zheng YG
    ACS Synth Biol; 2022 May; 11(5):1908-1918. PubMed ID: 35476404
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of homoserine O-succinyltransferase for efficient production of L-methionine in engineered Escherichia coli.
    Tang XL; Chen LJ; Du XY; Zhang B; Liu ZQ; Zheng YG
    J Biotechnol; 2020 Feb; 309():53-58. PubMed ID: 31891734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deletion of regulator-encoding genes fadR, fabR and iclR to increase L-threonine production in Escherichia coli.
    Yang J; Fang Y; Wang J; Wang C; Zhao L; Wang X
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4549-4564. PubMed ID: 31001742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-regulated efficient production of L-threonine via an artificial quorum sensing system in engineered Escherichia coli.
    Song J; Zhuang M; Fang Y; Hu X; Wang X
    Microbiol Res; 2024 Jul; 284():127720. PubMed ID: 38640767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.