BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34329844)

  • 1. Electrode-dependent ammonium oxidation with different low C/N ratios in single-chambered microbial electrolysis cells.
    Zhou Q; Yang N; Zheng D; Zhang L; Tian C; Yang Q; Li D
    Bioelectrochemistry; 2021 Dec; 142():107889. PubMed ID: 34329844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioelectrochemical anoxic ammonium nitrogen removal by an MFC driven single chamber microbial electrolysis cell.
    Koffi NJ; Okabe S
    Chemosphere; 2021 Jul; 274():129715. PubMed ID: 33529951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell.
    Zhan G; Zhang L; Li D; Su W; Tao Y; Qian J
    Bioresour Technol; 2012 Jul; 116():271-7. PubMed ID: 22572551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ammonium Recovery and Biogas Upgrading in a Tubular Micro-Pilot Microbial Electrolysis Cell (MEC).
    Cristiani L; Zeppilli M; Porcu C; Majone M
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32545472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Optimization of the Mainstream Anaerobic Ammonia Oxidation Process and Its Changes of the Microbial Community].
    Fu KM; Fu C; Li H; Jiang S; Qiu FG; Cao XQ
    Huan Jing Ke Xue; 2018 Dec; 39(12):5596-5604. PubMed ID: 30628405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions.
    Zhang J; Zhang Y; Quan X; Chen S; Afzal S
    Bioresour Technol; 2013 May; 136():273-80. PubMed ID: 23567691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial electrochemical driven anaerobic ammonium oxidation coupling to denitrification in a single-chamber stainless steel reactor for simultaneous nitrogen and carbon removal.
    Cui M; Gu W; Yang X; Li D; Zhang L; Yang N; Wang X; Zhan G
    Bioelectrochemistry; 2022 Jun; 145():108097. PubMed ID: 35313237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ammonia oxidation and denitrification in a bio-anode single-chambered microbial electrolysis cell.
    Zheng D; Gu W; Zhou Q; Zhang L; Wei C; Yang Q; Li D
    Bioresour Technol; 2020 Aug; 310():123466. PubMed ID: 32388207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous high-purity bioelectrochemical nitrogen recovery from high N-loaded wastewaters.
    Ul Z; Sulonen M; Baeza JA; Guisasola A
    Bioelectrochemistry; 2024 Aug; 158():108707. PubMed ID: 38653107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate.
    Hari AR; Katuri KP; Gorron E; Logan BE; Saikaly PE
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5999-6011. PubMed ID: 26936773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioelectrical Methane Production with an Ammonium Oxidative Reaction under the No Organic Substance Condition.
    Dinh HTT; Kambara H; Harada Y; Matsushita S; Aoi Y; Kindaichi T; Ozaki N; Ohashi A
    Microbes Environ; 2021; 36(2):. PubMed ID: 34135211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of organic carbon and nitrogen in a membraneless flow-through microbial electrolysis cell.
    Hussain A; Lebrun FM; Tartakovsky B
    Enzyme Microb Technol; 2017 Jul; 102():41-48. PubMed ID: 28465059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Similar Methanogenic Shift but Divergent Syntrophic Partners in Anaerobic Digesters Exposed to Direct versus Successive Ammonium Additions.
    Hardy J; Bonin P; Lazuka A; Gonidec E; Guasco S; Valette C; Lacroix S; Cabrol L
    Microbiol Spectr; 2021 Oct; 9(2):e0080521. PubMed ID: 34612672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of simultaneous organic carbon and nitrogen removal in microbial fuel cells and microbial electrolysis cells.
    Hussain A; Manuel M; Tartakovsky B
    J Environ Manage; 2016 May; 173():23-33. PubMed ID: 26950500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introducing an affordable catalyst for biohydrogen production in microbial electrolysis cells.
    Ghasemi B; Yaghmaei S; Abdi K; Mardanpour MM; Haddadi SA
    J Biosci Bioeng; 2020 Jan; 129(1):67-76. PubMed ID: 31445821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic ammonium oxidation with an anode as the electron acceptor.
    Qu B; Fan B; Zhu S; Zheng Y
    Environ Microbiol Rep; 2014 Feb; 6(1):100-5. PubMed ID: 24596267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance.
    Cercado B; Cházaro-Ruiz LF; Ruiz V; López-Prieto Ide J; Buitrón G; Razo-Flores E
    Biosens Bioelectron; 2013 Dec; 50():373-81. PubMed ID: 23891866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of microbial communities during anode biofilm reformation in a two-chambered microbial electrolysis cell (MEC).
    Liu W; Wang A; Sun D; Ren N; Zhang Y; Zhou J
    J Biotechnol; 2012 Feb; 157(4):628-32. PubMed ID: 21939699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen removal from ammonium- and sulfate-rich wastewater in an upflow anaerobic sludge bed reactor: performance and microbial community structure.
    Qin Y; Wei Q; Zhang Y; Li H; Jiang Y; Zheng J
    Ecotoxicology; 2021 Oct; 30(8):1719-1730. PubMed ID: 33792797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anodic ammonium oxidation in microbial electrolysis cell: Towards nitrogen removal in low C/N environment.
    Wang T; Chen M; Zhu J; Li N; Wang X
    Water Res; 2023 Aug; 242():120276. PubMed ID: 37392506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.