These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34329862)

  • 1. Efficient parallel simulation of hemodynamics in patient-specific abdominal aorta with aneurysm.
    Qin S; Wu B; Liu J; Shiu WS; Yan Z; Chen R; Cai XC
    Comput Biol Med; 2021 Sep; 136():104652. PubMed ID: 34329862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A parallel non-nested two-level domain decomposition method for simulating blood flows in cerebral artery of stroke patient.
    Chen R; Wu B; Cheng Z; Shiu WS; Liu J; Liu L; Wang Y; Wang X; Cai XC
    Int J Numer Method Biomed Eng; 2020 Nov; 36(11):e3392. PubMed ID: 32783371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of unsteady blood flows in a patient-specific compliant pulmonary artery with a highly parallel monolithically coupled fluid-structure interaction algorithm.
    Kong F; Kheyfets V; Finol E; Cai XC
    Int J Numer Method Biomed Eng; 2019 Jul; 35(7):e3208. PubMed ID: 30989794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Simulation of Blood Flows in Patient-specific Abdominal Aorta with Primary Organs.
    Qin S; Chen R; Wu B; Shiu WS; Cai XC
    Biomech Model Mechanobiol; 2021 Jun; 20(3):909-924. PubMed ID: 33582934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An aneurysm-specific preconditioning technique for the acceleration of Newton-Krylov method with application in the simulation of blood flows.
    Liu Y; Qi F; Cai XC
    Int J Numer Method Biomed Eng; 2023 Dec; 39(12):e3771. PubMed ID: 37688432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution cerebral blood flow simulation with a domain decomposition method and verified by the TCD measurement.
    Zhou J; Li J; Qin S; Liu J; Lin Z; Xie J; Zhang Z; Chen R
    Comput Methods Programs Biomed; 2022 Sep; 224():107004. PubMed ID: 35841853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly parallel simulation of patient-specific hepatic flows.
    Lin Z; Chen R; Gao B; Qin S; Wu B; Liu J; Cai XC
    Int J Numer Method Biomed Eng; 2021 Jun; 37(6):e3451. PubMed ID: 33609008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of intracranial hemodynamics by an efficient and accurate immersed boundary scheme.
    Lampropoulos DS; Bourantas GC; Zwick BF; Kagadis GC; Wittek A; Miller K; Loukopoulos VC
    Int J Numer Method Biomed Eng; 2021 Dec; 37(12):e3524. PubMed ID: 34448366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood flow in a compliant vessel by the immersed boundary method.
    Kim Y; Lim S; Raman SV; Simonetti OP; Friedman A
    Ann Biomed Eng; 2009 May; 37(5):927-42. PubMed ID: 19283479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational simulation of the effect of hybrid treatment for thoracoabdominal aortic aneurysm on the hemodynamics of abdominal aorta.
    Wen J; Yuan D; Wang Q; Hu Y; Zhao J; Zheng T; Fan Y
    Sci Rep; 2016 Mar; 6():23801. PubMed ID: 27029949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulations of time harmonic blood flow in the Mesenteric artery: comparing finite element and lattice Boltzmann methods.
    Axner L; Hoekstra AG; Jeays A; Lawford P; Hose R; Sloot PM
    Biomed Eng Online; 2009 Oct; 8():23. PubMed ID: 19799782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient parallel simulation of unsteady blood flows in patient-specific pulmonary artery.
    Kong F; Kheyfets V; Finol E; Cai XC
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2952. PubMed ID: 29245182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of aortic repair based on flow field computer simulation within the thoracic aorta.
    Filipovic N; Milasinovic D; Zdravkovic N; Böckler D; von Tengg-Kobligk H
    Comput Methods Programs Biomed; 2011 Mar; 101(3):243-52. PubMed ID: 21316789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of branching blood flows on parallel computers.
    Yue X; Hwang FN; Shandas R; Cai XC
    Biomed Sci Instrum; 2004; 40():325-30. PubMed ID: 15133979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow dynamics in anatomical models of abdominal aortic aneurysms: computational analysis of pulsatile flow.
    Finol EA; Amon CH
    Acta Cient Venez; 2003; 54(1):43-9. PubMed ID: 14515766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.
    Ge L; Sotiropoulos F
    J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture.
    Boyd AJ; Kuhn DC; Lozowy RJ; Kulbisky GP
    J Vasc Surg; 2016 Jun; 63(6):1613-9. PubMed ID: 25752691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Hemodynamic study of thoracic aortic aneurysm based on computational fluid dynamics technique].
    Hu XZ; Xiong J; Luan SL; Guo W
    Zhonghua Yi Xue Za Zhi; 2011 Nov; 91(42):2963-6. PubMed ID: 22333020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational approach for probing the flow through artificial heart devices.
    Kiris C; Kwak D; Rogers S; Chang ID
    J Biomech Eng; 1997 Nov; 119(4):452-60. PubMed ID: 9407285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the abdominal aortic aneurysms: pulsatile state considerations.
    Viswanath N; Rodkiewicz CM; Zajac S
    Med Eng Phys; 1997 Jun; 19(4):343-51. PubMed ID: 9302674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.