These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34330380)

  • 1. The Role of Artificial Intelligence in Arrhythmia Monitoring.
    Siontis KC; Friedman PA
    Card Electrophysiol Clin; 2021 Sep; 13(3):543-554. PubMed ID: 34330380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The EINTHOVEN system: toward an improved cardiac arrhythmia monitor.
    Widman LE
    Proc Annu Symp Comput Appl Med Care; 1991; ():441-5. PubMed ID: 1807639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Intelligence and Machine Learning in Arrhythmias and Cardiac Electrophysiology.
    Feeny AK; Chung MK; Madabhushi A; Attia ZI; Cikes M; Firouznia M; Friedman PA; Kalscheur MM; Kapa S; Narayan SM; Noseworthy PA; Passman RS; Perez MV; Peters NS; Piccini JP; Tarakji KG; Thomas SA; Trayanova NA; Turakhia MP; Wang PJ
    Circ Arrhythm Electrophysiol; 2020 Aug; 13(8):e007952. PubMed ID: 32628863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electrocardiogram endeavour: from the Holter single-lead recordings to multilead wearable devices supported by computational machine learning algorithms.
    Vardas P; Cowie M; Dagres N; Asvestas D; Tzeis S; Vardas EP; Hindricks G; Camm J
    Europace; 2020 Jan; 22(1):19-23. PubMed ID: 31535151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Personalized Arrhythmia Monitoring Platform.
    Raj S; Ray KC
    Sci Rep; 2018 Jul; 8(1):11395. PubMed ID: 30061754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arrhythmia Classification using Deep Learning and Machine Learning with Features Extracted from Waveform-based Signal Processing.
    Hsu PY; Cheng CK
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():292-295. PubMed ID: 33017986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arrhythmia detection using deep convolutional neural network with long duration ECG signals.
    Yıldırım Ö; Pławiak P; Tan RS; Acharya UR
    Comput Biol Med; 2018 Nov; 102():411-420. PubMed ID: 30245122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The application of deep learning in electrocardiogram: Where we came from and where we should go?
    Sun JY; Shen H; Qu Q; Sun W; Kong XQ
    Int J Cardiol; 2021 Aug; 337():71-78. PubMed ID: 34000355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and Application of a Medical-Grade Wireless Monitoring System for Physiological Signals at General Wards.
    Xu H; Li P; Yang Z; Liu X; Wang Z; Yan W; He M; Chu W; She Y; Li Y; Cao D; Yan M; Zhang Z
    J Med Syst; 2020 Sep; 44(10):182. PubMed ID: 32885290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning of electrophysiological signals for the prediction of ventricular arrhythmias: systematic review and examination of heterogeneity between studies.
    Kolk MZH; Deb B; Ruipérez-Campillo S; Bhatia NK; Clopton P; Wilde AAM; Narayan SM; Knops RE; Tjong FVY
    EBioMedicine; 2023 Mar; 89():104462. PubMed ID: 36773349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust algorithm for arrhythmia classification in ECG using extreme learning machine.
    Kim J; Shin HS; Shin K; Lee M
    Biomed Eng Online; 2009 Oct; 8():31. PubMed ID: 19863819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing false alarm rates for critical arrhythmias using the arterial blood pressure waveform.
    Aboukhalil A; Nielsen L; Saeed M; Mark RG; Clifford GD
    J Biomed Inform; 2008 Jun; 41(3):442-51. PubMed ID: 18440873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of neural networks in the diagnosis and treatment of cardiac arrhythmia.
    Abbas M; Alqahtani M; Al-Gahtani SF; Algahtani A; Kessentini A; Loukil H; Parayangat M; Ijyas T; Mohammed AW
    Discov Med; 2020; 30(159):27-38. PubMed ID: 33357360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Emerging Role of Wearable Technologies in Detection of Arrhythmia.
    Cheung CC; Krahn AD; Andrade JG
    Can J Cardiol; 2018 Aug; 34(8):1083-1087. PubMed ID: 30049358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arrhythmia identification with two-lead electrocardiograms using artificial neural networks and support vector machines for a portable ECG monitor system.
    Liu SH; Cheng DC; Lin CM
    Sensors (Basel); 2013 Jan; 13(1):813-28. PubMed ID: 23303379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records.
    Yildirim O; Talo M; Ciaccio EJ; Tan RS; Acharya UR
    Comput Methods Programs Biomed; 2020 Dec; 197():105740. PubMed ID: 32932129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does cardiac rhythm monitoring in patients with elevated troponin levels lead to changes in management?
    Sharain K; Vasile VC; Jaffe AS
    Eur Heart J Acute Cardiovasc Care; 2017 Sep; 6(6):545-552. PubMed ID: 26819344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial Intelligence in Electrocardiology for Arrhythmia Diagnosis.
    Mukai Y; Tohyama T; Sakamoto K
    Circ J; 2022 Jul; 86(8):1281-1282. PubMed ID: 35584947
    [No Abstract]   [Full Text] [Related]  

  • 19. Transtelephonic monitoring: documentation of transient cardiac rhythm disturbances.
    Shen WK; Holmes DR; Hammill SC
    Mayo Clin Proc; 1987 Feb; 62(2):109-12. PubMed ID: 3807435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The quality of ECG data acquisition, and diagnostic performance of a novel adhesive patch for ambulatory cardiac rhythm monitoring in arrhythmia detection.
    Karaoğuz MR; Yurtseven E; Aslan G; Deliormanlı BG; Adıgüzel Ö; Gönen M; Li KM; Yılmaz EN
    J Electrocardiol; 2019; 54():28-35. PubMed ID: 30851474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.