These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
424 related articles for article (PubMed ID: 34330468)
1. Energy requirements of long-term ventilated COVID-19 patients with resolved SARS-CoV-2 infection. von Renesse J; von Bonin S; Held HC; Schneider R; Seifert AM; Seifert L; Spieth P; Weitz J; Welsch T; Meisterfeld R Clin Nutr ESPEN; 2021 Aug; 44():211-217. PubMed ID: 34330468 [TBL] [Abstract][Full Text] [Related]
2. Prolonged progressive hypermetabolism during COVID-19 hospitalization undetected by common predictive energy equations. Niederer LE; Miller H; Haines KL; Molinger J; Whittle J; MacLeod DB; McClave SA; Wischmeyer PE Clin Nutr ESPEN; 2021 Oct; 45():341-350. PubMed ID: 34620338 [TBL] [Abstract][Full Text] [Related]
3. The usefulness of a new indirect calorimeter in critically ill adult patients. Lakenman PLM; van der Hoven B; van Bommel J; Olieman JF; Joosten KFM Clin Nutr; 2024 Oct; 43(10):2267-2272. PubMed ID: 39208718 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the Beacon and Quark indirect calorimetry devices to measure resting energy expenditure in ventilated ICU patients. Slingerland-Boot H; Adhikari S; Mensink MR; van Zanten ARH Clin Nutr ESPEN; 2022 Apr; 48():370-377. PubMed ID: 35331516 [TBL] [Abstract][Full Text] [Related]
5. Are Predictive Energy Expenditure Equations in Ventilated Surgery Patients Accurate? Tignanelli CJ; Andrews AG; Sieloff KM; Pleva MR; Reichert HA; Wooley JA; Napolitano LM; Cherry-Bukowiec JR J Intensive Care Med; 2019 May; 34(5):426-431. PubMed ID: 28382850 [TBL] [Abstract][Full Text] [Related]
6. Determination of the energy requirements in mechanically ventilated critically ill elderly patients in different BMI groups using the Harris-Benedict equation. Hsu PH; Lee CH; Kuo LK; Kung YC; Chen WJ; Tzeng MS J Formos Med Assoc; 2018 Apr; 117(4):301-307. PubMed ID: 29336938 [TBL] [Abstract][Full Text] [Related]
7. A Single-Center Prospective Observational Study Comparing Resting Energy Expenditure in Different Phases of Critical Illness: Indirect Calorimetry Versus Predictive Equations. Tah PC; Lee ZY; Poh BK; Abdul Majid H; Hakumat-Rai VR; Mat Nor MB; Kee CC; Kamarul Zaman M; Hasan MS Crit Care Med; 2020 May; 48(5):e380-e390. PubMed ID: 32168031 [TBL] [Abstract][Full Text] [Related]
8. A critical view of the use of predictive energy equations for the identification of hypermetabolism in motor neuron disease: A pilot study. Roscoe S; Skinner E; Kabucho Kibirige E; Childs C; Weekes CE; Wootton S; Allen S; McDermott C; Stavroulakis T Clin Nutr ESPEN; 2023 Oct; 57():739-748. PubMed ID: 37739732 [TBL] [Abstract][Full Text] [Related]
9. Validation of the Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition Recommendations for Caloric Provision to Critically Ill Obese Patients: A Pilot Study. Mogensen KM; Andrew BY; Corona JC; Robinson MK JPEN J Parenter Enteral Nutr; 2016 Jul; 40(5):713-21. PubMed ID: 25897016 [TBL] [Abstract][Full Text] [Related]
10. Energy expenditure and feeding practices and tolerance during the acute and late phase of critically ill COVID-19 patients. Lakenman PLM; van der Hoven B; Schuijs JM; Eveleens RD; van Bommel J; Olieman JF; Joosten KFM Clin Nutr ESPEN; 2021 Jun; 43():383-389. PubMed ID: 34024544 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Energy Expenditure in Mechanically Ventilated Septic Shock Patients in Acute and Recovery Periods via Indirect Calorimetry. Israfilov E; Kir S JPEN J Parenter Enteral Nutr; 2021 Sep; 45(7):1523-1531. PubMed ID: 33314315 [TBL] [Abstract][Full Text] [Related]
12. Indirect Calorimetry as an Instrument of Research to Identify the Effect of Hypermetabolism in Critical Patients' Prognosis. Sousa G; Mendes I; Tavares L; Brotas Carvalho R; Henriques M; Costa H Cureus; 2021 Sep; 13(9):e17784. PubMed ID: 34659995 [TBL] [Abstract][Full Text] [Related]
13. [Determination of resting energy expenditure in critically ill children experiencing mechanical ventilation]. Dong HB; Yang YW; Wang Y; Hong L Zhonghua Er Ke Za Zhi; 2012 Nov; 50(11):847-50. PubMed ID: 23302617 [TBL] [Abstract][Full Text] [Related]
14. Resting energy expenditure in severely burned children: analysis of agreement between indirect calorimetry and prediction equations using the Bland-Altman method. Suman OE; Mlcak RP; Chinkes DL; Herndon DN Burns; 2006 May; 32(3):335-42. PubMed ID: 16529869 [TBL] [Abstract][Full Text] [Related]
15. Point-Counterpoint: Indirect Calorimetry Is Essential for Optimal Nutrition Therapy in the Intensive Care Unit. Wischmeyer PE; Molinger J; Haines K Nutr Clin Pract; 2021 Apr; 36(2):275-281. PubMed ID: 33734477 [TBL] [Abstract][Full Text] [Related]
16. Energy expenditure in COVID-19 mechanically ventilated patients: A comparison of three methods of energy estimation. Saseedharan S; Chada RR; Kadam V; Chiluka A; Nagalla B JPEN J Parenter Enteral Nutr; 2022 Nov; 46(8):1875-1882. PubMed ID: 35526145 [TBL] [Abstract][Full Text] [Related]
17. Energy Balance in Critically Ill Children With Severe Sepsis Using Indirect Calorimetry: A Prospective Cohort Study. Ismail J; Bansal A; Jayashree M; Nallasamy K; Attri SV J Pediatr Gastroenterol Nutr; 2019 Jun; 68(6):868-873. PubMed ID: 30889134 [TBL] [Abstract][Full Text] [Related]
18. Resting energy expenditure by indirect calorimetry versus the ventilator-VCO Koekkoek WAC; Xiaochen G; van Dijk D; van Zanten ARH Clin Nutr ESPEN; 2020 Oct; 39():137-143. PubMed ID: 32859307 [TBL] [Abstract][Full Text] [Related]
19. Resting Energy Expenditure in the Critically Ill and Healthy Elderly-A Retrospective Matched Cohort Study. Lindner M; Geisler C; Rembarz K; Hummitzsch L; Radke DI; Schulte DM; Müller MJ; Bosy-Westphal A; Elke G Nutrients; 2023 Jan; 15(2):. PubMed ID: 36678174 [TBL] [Abstract][Full Text] [Related]