These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 34330708)

  • 1. Metabolic control of nitrogen fixation in rhizobium-legume symbioses.
    Schulte CCM; Borah K; Wheatley RM; Terpolilli JJ; Saalbach G; Crang N; de Groot DH; Ratcliffe RG; Kruger NJ; Papachristodoulou A; Poole PS
    Sci Adv; 2021 Jul; 7(31):. PubMed ID: 34330708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids.
    Terpolilli JJ; Masakapalli SK; Karunakaran R; Webb IU; Green R; Watmough NJ; Kruger NJ; Ratcliffe RG; Poole PS
    J Bacteriol; 2016 Oct; 198(20):2864-75. PubMed ID: 27501983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Scale Metabolic Modelling of Lifestyle Changes in Rhizobium leguminosarum.
    Schulte CCM; Ramachandran VK; Papachristodoulou A; Poole PS
    mSystems; 2022 Feb; 7(1):e0097521. PubMed ID: 35014871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis.
    Lodwig EM; Hosie AH; Bourdès A; Findlay K; Allaway D; Karunakaran R; Downie JA; Poole PS
    Nature; 2003 Apr; 422(6933):722-6. PubMed ID: 12700763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From Intracellular Bacteria to Differentiated Bacteroids: Transcriptome and Metabolome Analysis in
    Lamouche F; Chaumeret A; Guefrachi I; Barrière Q; Pierre O; Guérard F; Gilard F; Giraud E; Dessaux Y; Gakière B; Timchenko T; Kereszt A; Mergaert P; Alunni B
    J Bacteriol; 2019 Sep; 201(17):. PubMed ID: 31182497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Rhizobia Adapt to the Nodule Environment.
    Ledermann R; Schulte CCM; Poole PS
    J Bacteriol; 2021 May; 203(12):e0053920. PubMed ID: 33526611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon and nitrogen metabolism in Rhizobium.
    Poole P; Allaway D
    Adv Microb Physiol; 2000; 43():117-63. PubMed ID: 10907556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis.
    Hichri I; Boscari A; Castella C; Rovere M; Puppo A; Brouquisse R
    J Exp Bot; 2015 May; 66(10):2877-87. PubMed ID: 25732535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of the rhizobium-legume symbiosis by the plant nitrogen demand is tightly integrated at the whole plant level and requires inter-organ systemic signaling.
    Lepetit M; Brouquisse R
    Front Plant Sci; 2023; 14():1114840. PubMed ID: 36968361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Legume Sanctions and the Evolution of Symbiotic Cooperation by Rhizobia.
    Denison RF
    Am Nat; 2000 Dec; 156(6):567-576. PubMed ID: 29592542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of short-term n(2) deficiency on N metabolism in legume nodules.
    Atkins CA; Pate JS; Shelp BJ
    Plant Physiol; 1984 Nov; 76(3):705-10. PubMed ID: 16663910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Rhizobium--legume symbiosis.
    Beringer JE; Brewin N; Johnston AW; Schulman HM; Hopwood DA
    Proc R Soc Lond B Biol Sci; 1979 Apr; 204(1155):219-33. PubMed ID: 36624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhizobial Diversity and Nodulation Characteristics of the Extremely Promiscuous Legume Sophora flavescens.
    Jiao YS; Liu YH; Yan H; Wang ET; Tian CF; Chen WX; Guo BL; Chen WF
    Mol Plant Microbe Interact; 2015 Dec; 28(12):1338-52. PubMed ID: 26389798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimal gene set from
    Geddes BA; Kearsley JVS; Huang J; Zamani M; Muhammed Z; Sather L; Panchal AK; diCenzo GC; Finan TM
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33384333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Alkane Sulfonate Monooxygenase Is Required for Symbiotic Nitrogen Fixation by
    Speck JJ; James EK; Sugawara M; Sadowsky MJ; Gyaneshwar P
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31562172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular insights into bacteroid development during Rhizobium-legume symbiosis.
    Haag AF; Arnold MF; Myka KK; Kerscher B; Dall'Angelo S; Zanda M; Mergaert P; Ferguson GP
    FEMS Microbiol Rev; 2013 May; 37(3):364-83. PubMed ID: 22998605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of O2 in the Growth of Rhizobium leguminosarum bv. viciae 3841 on Glucose and Succinate.
    Wheatley RM; Ramachandran VK; Geddes BA; Perry BJ; Yost CK; Poole PS
    J Bacteriol; 2017 Jan; 199(1):. PubMed ID: 27795326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of alanine dehydrogenase and its role in mixed secretion of ammonium and alanine by pea bacteroids.
    Allaway D; Lodwig EM; Crompton LA; Wood M; Parsons R; Wheeler TR; Poole PS
    Mol Microbiol; 2000 Apr; 36(2):508-15. PubMed ID: 10792736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alanine, not ammonia, is excreted from N2-fixing soybean nodule bacteroids.
    Waters JK; Hughes BL; Purcell LC; Gerhardt KO; Mawhinney TP; Emerich DW
    Proc Natl Acad Sci U S A; 1998 Sep; 95(20):12038-42. PubMed ID: 9751786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Minimal Genetic Passkey to Unlock Many Legume Doors to Root Nodulation by Rhizobia.
    Unay J; Perret X
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32392829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.