BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 34330790)

  • 1. Global patterns of enhancer activity during sea urchin embryogenesis assessed by eRNA profiling.
    Khor JM; Guerrero-Santoro J; Douglas W; Ettensohn CA
    Genome Res; 2021 Sep; 31(9):1680-1692. PubMed ID: 34330790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and prediction of developmental enhancers in sea urchin embryos.
    Arenas-Mena C; Miljovska S; Rice EJ; Gurges J; Shashikant T; Wang Z; Ercan S; Danko CG
    BMC Genomics; 2021 Oct; 22(1):751. PubMed ID: 34666684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling.
    Shashikant T; Khor JM; Ettensohn CA
    BMC Genomics; 2018 Mar; 19(1):206. PubMed ID: 29558892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription.
    Mikhaylichenko O; Bondarenko V; Harnett D; Schor IE; Males M; Viales RR; Furlong EEM
    Genes Dev; 2018 Jan; 32(1):42-57. PubMed ID: 29378788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single-cell RNA-seq analysis of Brachyury-expressing cell clusters suggests a morphogenesis-associated signal center of oral ectoderm in sea urchin embryos.
    Satoh N; Hisata K; Foster S; Morita S; Nishitsuji K; Oulhen N; Tominaga H; Wessel GM
    Dev Biol; 2022 Mar; 483():128-142. PubMed ID: 35038441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal activation of the sea urchin late H1 gene requires stage-specific phosphorylation of the embryonic transcription factor SSAP.
    Li Z; Childs G
    Mol Cell Biol; 1999 May; 19(5):3684-95. PubMed ID: 10207092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Architecture and evolution of the
    Khor JM; Ettensohn CA
    Elife; 2022 Feb; 11():. PubMed ID: 35212624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Widespread priming of transcriptional regulatory elements by incipient accessibility or RNA polymerase II pause in early embryos of the sea urchin Strongylocentrotus purpuratus.
    Arenas-Mena C; Akin S
    Genetics; 2023 Oct; 225(2):. PubMed ID: 37551428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-specific RNA expression marks distant-acting developmental enhancers.
    Wu H; Nord AS; Akiyama JA; Shoukry M; Afzal V; Rubin EM; Pennacchio LA; Visel A
    PLoS Genet; 2014 Sep; 10(9):e1004610. PubMed ID: 25188404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional organization of DNA elements regulating SM30alpha, a spicule matrix gene of sea urchin embryos.
    Yamasu K; Wilt FH
    Dev Growth Differ; 1999 Feb; 41(1):81-91. PubMed ID: 10445505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of transcribed enhancers during cerebellar development through enhancer RNA analysis.
    Ramirez M; Robert R; Yeung J; Wu J; Abdalla-Wyse A; ; Goldowitz D
    BMC Genomics; 2023 Jun; 24(1):351. PubMed ID: 37365500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ectoderm gene activation in sea urchin embryos mediated by the CCAAT-binding factor.
    Li X; Bhattacharya C; Dayal S; Maity S; Klein WH
    Differentiation; 2002 May; 70(2-3):109-19. PubMed ID: 12076338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks.
    Poustka AJ; Kühn A; Groth D; Weise V; Yaguchi S; Burke RD; Herwig R; Lehrach H; Panopoulou G
    Genome Biol; 2007; 8(5):R85. PubMed ID: 17506889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins.
    Erkenbrack EM
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7202-E7211. PubMed ID: 27810959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation, annotation, evolutionary analysis, and database integration of 20,000 unique sea urchin EST clusters.
    Poustka AJ; Groth D; Hennig S; Thamm S; Cameron A; Beck A; Reinhardt R; Herwig R; Panopoulou G; Lehrach H
    Genome Res; 2003 Dec; 13(12):2736-46. PubMed ID: 14656975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unique chromatin signature uncovers early developmental enhancers in humans.
    Rada-Iglesias A; Bajpai R; Swigut T; Brugmann SA; Flynn RA; Wysocka J
    Nature; 2011 Feb; 470(7333):279-83. PubMed ID: 21160473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially deranged though temporally correct expression of Strongylocentrotus purpuratus actin gene fusion in transgenic embryos of a different sea urchin family.
    Franks RR; Hough-Evans BR; Britten RJ; Davidson EH
    Genes Dev; 1988 Jan; 2(1):1-12. PubMed ID: 3162723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An optimized Tet-On system for conditional control of gene expression in sea urchins.
    Khor JM; Ettensohn CA
    Development; 2023 Jan; 150(1):. PubMed ID: 36607745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The gene encoding the sea urchin complement protein, SpC3, is expressed in embryos and can be upregulated by bacteria.
    Shah M; Brown KM; Smith LC
    Dev Comp Immunol; 2003; 27(6-7):529-38. PubMed ID: 12697310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.