These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34330819)

  • 1. Learning-Induced Shifts in Mice Navigational Strategies Are Unveiled by a Minimal Behavioral Model of Spatial Exploration.
    Vallianatou CA; Alonso A; Aleman AZ; Genzel L; Stella F
    eNeuro; 2021; 8(5):. PubMed ID: 34330819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The HexMaze: A Previous Knowledge Task on Map Learning for Mice.
    Alonso A; Bokeria L; van der Meij J; Samanta A; Eichler R; Lotfi A; Spooner P; Navarro Lobato I; Genzel L
    eNeuro; 2021; 8(4):. PubMed ID: 34135006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential navigational strategies during spatial learning in a new modified version of the Oasis maze.
    Concha-Miranda M; More J; Grinspun N; Sanchez C; Paula-Lima A; Valdés JL
    Behav Brain Res; 2020 May; 385():112555. PubMed ID: 32109438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the interaction of navigational systems in a reward-based virtual navigation task.
    Raiesdana S
    J Integr Neurosci; 2018; 17(1):27-42. PubMed ID: 29376881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects in young and aged rats' navigational accuracy following instantaneous rotation of environmental cues.
    Lester AW; Jordan GA; Blum CJ; Philpot ZP; Barnes CA
    Behav Neurosci; 2022 Dec; 136(6):561-574. PubMed ID: 36395015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Key of the Maze: The role of mental imagery and cognitive flexibility in navigational planning.
    Bocchi A; Carrieri M; Lancia S; Quaresima V; Piccardi L
    Neurosci Lett; 2017 Jun; 651():146-150. PubMed ID: 28495273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Representation of human spatial navigation responding to input spatial information and output navigational strategies: An ALE meta-analysis.
    Qiu Y; Wu Y; Liu R; Wang J; Huang H; Huang R
    Neurosci Biobehav Rev; 2019 Aug; 103():60-72. PubMed ID: 31201830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Aging Navigational System.
    Lester AW; Moffat SD; Wiener JM; Barnes CA; Wolbers T
    Neuron; 2017 Aug; 95(5):1019-1035. PubMed ID: 28858613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathfinder: open source software for analyzing spatial navigation search strategies.
    Cooke MB; O'Leary TP; Harris P; Ma R; Brown RE; Snyder JS
    F1000Res; 2019; 8():1521. PubMed ID: 32025289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A framework to identify structured behavioral patterns within rodent spatial trajectories.
    Donnarumma F; Prevete R; Maisto D; Fuscone S; Irvine EM; van der Meer MAA; Kemere C; Pezzulo G
    Sci Rep; 2021 Jan; 11(1):468. PubMed ID: 33432100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Execution of new trajectories toward a stable goal without a functional hippocampus.
    Duszkiewicz AJ; Rossato JI; Moreno A; Takeuchi T; Yamasaki M; Genzel L; Spooner P; Canals S; Morris RGM
    Hippocampus; 2023 Jun; 33(6):769-786. PubMed ID: 36798045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cognitive map in a poison frog.
    Liu Y; Day LB; Summers K; Burmeister SS
    J Exp Biol; 2019 Jun; 222(Pt 11):. PubMed ID: 31182504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The response strategy and the place strategy in a plus-maze have different sensitivities to devaluation of expected outcome.
    Kosaki Y; Pearce JM; McGregor A
    Hippocampus; 2018 Jul; 28(7):484-496. PubMed ID: 29637657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new rat-compatible robotic framework for spatial navigation behavioral experiments.
    Gianelli S; Harland B; Fellous JM
    J Neurosci Methods; 2018 Jan; 294():40-50. PubMed ID: 29113794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cognitive map formation through tactile map navigation in visually impaired and sighted persons.
    Ottink L; van Raalte B; Doeller CF; Van der Geest TM; Van Wezel RJA
    Sci Rep; 2022 Jul; 12(1):11567. PubMed ID: 35798929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learned Spatial Schemas and Prospective Hippocampal Activity Support Navigation After One-Shot Learning.
    van Kesteren MTR; Brown TI; Wagner AD
    Front Hum Neurosci; 2018; 12():486. PubMed ID: 30564110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Navigation task and action space drive the emergence of egocentric and allocentric spatial representations.
    Vijayabaskaran S; Cheng S
    PLoS Comput Biol; 2022 Oct; 18(10):e1010320. PubMed ID: 36315587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial Learning Drives Rapid Goal Representation in Hippocampal Ripples without Place Field Accumulation or Goal-Oriented Theta Sequences.
    Pfeiffer BE
    J Neurosci; 2022 May; 42(19):3975-3988. PubMed ID: 35396328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing Navigation in Real Space: Contributions to Understanding the Physiology and Pathology of Human Navigation Control.
    Schöberl F; Zwergal A; Brandt T
    Front Neural Circuits; 2020; 14():6. PubMed ID: 32210769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning.
    Zhou X; Bai T; Gao Y; Han Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.